INFLUENCE OF THE MAGNETIC FIELD ON FLOWING LIQUID OF SELECTED MAGNETIC PROPERTIES
Mateusz Krawczyk
AGH University of Science and Technology (Poland)
Mikołaj Skowron
mskowron@agh.edu.plAGH University of Science and Technology (Poland)
Abstract
This paper presents the results of the effect studies of the magnetic field on the paramagnetic, flowing liquid. In the area of direct magnetic field the eddy currents in flowing liquid are induced. The induced currents affect the distribution of the magnetic field in the area where the liquid flows. The interaction of induced currents and magnetic fields affect changes in the direction of movement of the liquid and pressure changes in the liquid. The article presents the results of the calculations of the magnetic field, changes of the direction of flowing liquids, and pressure changes in the modelled liquid. Calculations were run in the Comsol Multiphysics.
Keywords:
magnetic field, paramagnetic fluid, eddy currentsReferences
Alexiou Ch., Arnold W., Klein R. J., et al.: Locoregional Cancer Treatment with Magnetic Drug Targeting Cancer Research 60, 2000, p. 6641-6648.
Google Scholar
AvilésaM, Chenb H, Ebner A., et al.: In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting, Journal of Magnetism and Magnetic Materials, Volume 311, Issue 1, 2007, p. 306–311.
Google Scholar
Chen H, Ebner A., Bockenfeld D., et al.: A comprehensive in vitro investigation of a portable magnetic separator device for human blood detoxification, Physics in Medicine And Biology 52, 2007, p. 6053–6072.
Google Scholar
Cieśla A.: Field distribution in separator's working space for various winding configuration, Przegląd Elektrotechniczny, 87 nr 7, 2011, s. 99–103.
Google Scholar
Cieśla A.: Magnetic separation of kaolin clay using free helium superconducting magnet, Przegląd Elektrotechniczny, 88 nr 12b, 2012, s. 50–53.
Google Scholar
Cieśla A.: Superconducting magnet of free helium type used for the filtration in environmental processing, Przegląd Elektrotechniczny, 86, nr 5, 2010, s. 181–184.
Google Scholar
Furlani E P.: Magnetophoretic separation of blood cells at the microscale, Journal of Physics D: Applied Physics 40, 2007, p. 1313–1319.
Google Scholar
Ganguly R., Gaind A., et al.: Analyzing ferrofluid transport for magnetic drug targeting Journal of Magnetism and Magnetic Materials 289, 2005, p. 331–334.
Google Scholar
Haverkort J. W., Kenjeres S., Kleijn C. R.: Computational Simulations of Magnetic Particle Capture in Arterial Flows, Annals of Biomedical Engineering 2009.
Google Scholar
Haverkort J. W., Kenjereš S., Kleijn C. R.: Magnetic particle motion in a Poiseuille flow Physical Review E 80, 016302, 2009.
Google Scholar
Johannsen M., Thiesen B, Jordan A.: Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model The Prostate 64, 3, 2005, p. 283–292.
Google Scholar
Kakihara Y., Fukunishi T., Takeda S., Nishijima S., Nakahira A.: Superconducting high gradient magnetic separation for purification of wastewater from paper factory Applied Superconductivity, IEEE Transactions on 14, Issue: 2, 2004, p. 1565 – 1567.
Google Scholar
Laurent S., Dutz S., Häfeli U., Mahmoudi M.: Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles Advances in Colloid and Interface Science Volume 166, Issues 1–2, 2011, p. 8–23.
Google Scholar
Lübbe A.S. et al.: Preclinical Experiences with Magnetic Drug Targeting: Tolerance and Efficacy Cancer Research 56, 1996, p. 4694-4701.
Google Scholar
Nishijima S., Takeda S., Mishima F., et al.: A Study of Magnetic Drug Delivery System Using Bulk High Temperature Superconducting Magnet IEEE Transactions on applied superconductivity, vol. 18, no. 2, 2008.
Google Scholar
Odenbach S.: Recent progress in magnetic fluid research, Journal Of Physics: Condensed Matter 16, 2004, p. 1135–1150.
Google Scholar
Pamme N.: Continuous flow separations in microfluidic devices Lab Chip, 2007, 7, p. 1644–1659.
Google Scholar
Pamme N.: Magnetism and microfluidics Lab Chip, 2006, 6, p. 24–38.
Google Scholar
Skowron M.: Modelowanie i analiza pola magnetycznego w nietypowych układach współrzędnych, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 1, 2013, s. 47–48.
Google Scholar
Tartaj P., Puerto Morales M, Veintemillas-Verdaguer S, Gonzalez-Carreno T. Serna C. J.: The preparation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics 36, 2003, p. 182–197.
Google Scholar
Vander Sloten J., Verdonck P., Nyssen M., Haueisen J.: Optimizing drug delivery using non-uniform magnetic fields: a numerical study ECIFMBE 2008, IFMBE Proceedings 22, 2008, p. 2623–2627.
Google Scholar
Authors
Mateusz KrawczykAGH University of Science and Technology Poland
Statistics
Abstract views: 221PDF downloads: 81
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Mikołaj Skowron, Mikołaj Skowron, ANALYSIS OF THE ELECTRIC FIELD DISTRIBUTION IN THE DRUM SEPARATOR OF DIFFERENT ELECTRODE CONFIGURATION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 6 No. 2 (2016)
- Mikołaj Skowron, MODELING AND ANALYSIS OF MAGNETIC FIELD FOR UNTYPICAL COORDINATE SYSTEMS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 3 No. 1 (2013)