INFLUENCE OF THE MAGNETIC FIELD ON FLOWING LIQUID OF SELECTED MAGNETIC PROPERTIES

Mateusz Krawczyk


AGH University of Science and Technology (Poland)

Mikołaj Skowron

mskowron@agh.edu.pl
AGH University of Science and Technology (Poland)

Abstract

This paper presents the results of the effect studies of the magnetic field on the paramagnetic, flowing liquid. In the area of direct magnetic field the eddy currents in flowing liquid are induced. The induced currents affect the distribution of the magnetic field in the area where the liquid flows. The interaction of induced currents and magnetic fields affect changes in the direction of movement of the liquid and pressure changes in the liquid. The article presents the results of the calculations of the magnetic field, changes of the direction of flowing liquids, and pressure changes in the modelled liquid. Calculations were run in the Comsol Multiphysics.


Keywords:

magnetic field, paramagnetic fluid, eddy currents

Alexiou Ch., Arnold W., Klein R. J., et al.: Locoregional Cancer Treatment with Magnetic Drug Targeting Cancer Research 60, 2000, p. 6641-6648.
  Google Scholar

AvilésaM, Chenb H, Ebner A., et al.: In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting, Journal of Magnetism and Magnetic Materials, Volume 311, Issue 1, 2007, p. 306–311.
  Google Scholar

Chen H, Ebner A., Bockenfeld D., et al.: A comprehensive in vitro investigation of a portable magnetic separator device for human blood detoxification, Physics in Medicine And Biology 52, 2007, p. 6053–6072.
  Google Scholar

Cieśla A.: Field distribution in separator's working space for various winding configuration, Przegląd Elektrotechniczny, 87 nr 7, 2011, s. 99–103.
  Google Scholar

Cieśla A.: Magnetic separation of kaolin clay using free helium superconducting magnet, Przegląd Elektrotechniczny, 88 nr 12b, 2012, s. 50–53.
  Google Scholar

Cieśla A.: Superconducting magnet of free helium type used for the filtration in environmental processing, Przegląd Elektrotechniczny, 86, nr 5, 2010, s. 181–184.
  Google Scholar

Furlani E P.: Magnetophoretic separation of blood cells at the microscale, Journal of Physics D: Applied Physics 40, 2007, p. 1313–1319.
  Google Scholar

Ganguly R., Gaind A., et al.: Analyzing ferrofluid transport for magnetic drug targeting Journal of Magnetism and Magnetic Materials 289, 2005, p. 331–334.
  Google Scholar

Haverkort J. W., Kenjeres S., Kleijn C. R.: Computational Simulations of Magnetic Particle Capture in Arterial Flows, Annals of Biomedical Engineering 2009.
  Google Scholar

Haverkort J. W., Kenjereš S., Kleijn C. R.: Magnetic particle motion in a Poiseuille flow Physical Review E 80, 016302, 2009.
  Google Scholar

Johannsen M., Thiesen B, Jordan A.: Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model The Prostate 64, 3, 2005, p. 283–292.
  Google Scholar

Kakihara Y., Fukunishi T., Takeda S., Nishijima S., Nakahira A.: Superconducting high gradient magnetic separation for purification of wastewater from paper factory Applied Superconductivity, IEEE Transactions on 14, Issue: 2, 2004, p. 1565 – 1567.
  Google Scholar

Laurent S., Dutz S., Häfeli U., Mahmoudi M.: Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles Advances in Colloid and Interface Science Volume 166, Issues 1–2, 2011, p. 8–23.
  Google Scholar

Lübbe A.S. et al.: Preclinical Experiences with Magnetic Drug Targeting: Tolerance and Efficacy Cancer Research 56, 1996, p. 4694-4701.
  Google Scholar

Nishijima S., Takeda S., Mishima F., et al.: A Study of Magnetic Drug Delivery System Using Bulk High Temperature Superconducting Magnet IEEE Transactions on applied superconductivity, vol. 18, no. 2, 2008.
  Google Scholar

Odenbach S.: Recent progress in magnetic fluid research, Journal Of Physics: Condensed Matter 16, 2004, p. 1135–1150.
  Google Scholar

Pamme N.: Continuous flow separations in microfluidic devices Lab Chip, 2007, 7, p. 1644–1659.
  Google Scholar

Pamme N.: Magnetism and microfluidics Lab Chip, 2006, 6, p. 24–38.
  Google Scholar

Skowron M.: Modelowanie i analiza pola magnetycznego w nietypowych układach współrzędnych, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 1, 2013, s. 47–48.
  Google Scholar

Tartaj P., Puerto Morales M, Veintemillas-Verdaguer S, Gonzalez-Carreno T. Serna C. J.: The preparation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics 36, 2003, p. 182–197.
  Google Scholar

Vander Sloten J., Verdonck P., Nyssen M., Haueisen J.: Optimizing drug delivery using non-uniform magnetic fields: a numerical study ECIFMBE 2008, IFMBE Proceedings 22, 2008, p. 2623–2627.
  Google Scholar


Published
2014-06-18

Cited by

Krawczyk, M., & Skowron, M. (2014). INFLUENCE OF THE MAGNETIC FIELD ON FLOWING LIQUID OF SELECTED MAGNETIC PROPERTIES. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 4(2), 24–27. https://doi.org/10.5604/20830157.1109366

Authors

Mateusz Krawczyk 

AGH University of Science and Technology Poland

Authors

Mikołaj Skowron 
mskowron@agh.edu.pl
AGH University of Science and Technology Poland

Statistics

Abstract views: 228
PDF downloads: 83