INFLUENCE OF THE MAGNETIC FIELD ON FLOWING LIQUID OF SELECTED MAGNETIC PROPERTIES
Article Sidebar
Open full text
Issue Vol. 4 No. 2 (2014)
-
RESEARCH MADE IN INSTITUTE OF COMPUTER SCIENCE
Grzegorz Kozieł3-4
-
INDUSTRIAL IMPLEMENTATION AS A RESEARCH WORK KEYNOTE OF THE ELECTRICAL DRIVES AND ELECTRICAL MACHINES DEPARTMENT
Wojciech Jarzyna, Dariusz Zieliński5-8
-
OPTOELECTRONIC SYSTEMS IN DIAGNOSTIC AND MEASUREMENT APPLICATIONS
Andrzej Kotyra9-10
-
ELECTROTECHNOLOGIES SUPPORTING OF DIELECTRIC PLANT MATERIAL PROCESSING
Andrzej Sumorek11-12
-
COMPUTER SCIENCE STUDENT AT LUBLIN UNIVERSITY OF TECHNOLOGY KNOWLEDGE OF E-LEARNING PLATFORMS
Magdalena Borys, Edyta Łukasik13-15
-
HYPERFINE INTERACTIONS IN (BiFeO3)0.9-(BaTiO3)0.1 CERAMICS PREPARED BY MECHANICAL ACTIVATION
Bożena Malesa, Mariusz Mazurek16-19
-
ELECTRON OSCILLATIONS IN A QUANTUM DOT SYSTEM – NUMERICAL ANALISIS
Paweł Tchórzewski20-23
-
INFLUENCE OF THE MAGNETIC FIELD ON FLOWING LIQUID OF SELECTED MAGNETIC PROPERTIES
Mateusz Krawczyk, Mikołaj Skowron24-27
-
DEVICE FOR STUDY OF DYNAMIC SURFACE TENSION OF AQUEOUS SURFACTANT SOLUTIONS
Igor Kisil, Victor Bilischuk, Yuriy Kuchirka, Olga Barna28-30
-
INFORMATION SYSTEM FOR A FUZZY COGNITIVE ANALYSIS AND MODELING
Alexander Gozhyi, Irina Kalinina31-33
-
MODELING AND EVALUATION OF PROJECT RISKS IN MULTI-PROJECT ENVIRONMENT
Vasyl Lytvyn, Ihor Rishnyak34-36
-
CURRENT LIMITING SWITCH OF ALTERNATIVE VOLTAGE
Piotr Bogusławski37-40
-
OPTICAL CHARACTER RECOGNITION USING ARTIFICIAL INTELLIGENCE TECHNOLOGIES
Adam Musiał, Piotr Szczepaniak41-44
-
KNOWLEDGE EXTRACTION FROM THE EDDY CURRENT MEASUREMENT DATA
Pawel Frankowski45-48
-
ADAPTIVE LQR COURSE-KEEPING CONTROLLER FOR THE NONLINEAR MIMO MODEL OF A CONTAINER VESSEL
Michał Brasel49-52
-
GEOMETRY OPTIMIZATION OF WATER-JET MACHINE CUTTING HEAD USING FINITE ELEMENT METHOD
Maciej Szczepanik53-56
-
THE FUNCTIONALLY-ORIENTED METHOD FOR SPECIALIZED EI-SYSTEMS DESIGN APPLICATION
Anton Mykhailiuk, Andrii Pukach57-61
-
DEVELOPMENT OF THE ALGORITHMIC SOFTWARE AND INFORMATION SUPPLIES FOR THE LINGUISTIC ONTOLOGY BASED ON STRUCTURED ELECTRONIC ENCYCLOPEDIC RESOURCE FORMATION METHOD
Anton Mykhailiuk, Vasyl Teslyuk62-67
-
DEVELOPMENT OF THE AUTOMATIC CONTROL SYSTEM OF PUMPING STATION FOR URBAN WATER SUPPLY
Evgeniy Pistun, Natalia Yakymchuk68-71
-
SOME TECHNICAL AND ECONOMIC ASPECTS OF THE LOCATION OF WIND FARMS
Łukasz Gospodarek, Grzegorz Trzmiel72-76
-
THE LABORATORY SYSTEM TO ANALYZING POWER INVERTERS DURING VOLTAGE SAG
Dariusz Zieliński77-80
Archives
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
-
Vol. 4 No. 4
2014-12-09 29
-
Vol. 4 No. 3
2014-09-26 22
-
Vol. 4 No. 2
2014-06-18 21
-
Vol. 4 No. 1
2014-03-12 19
-
Vol. 3 No. 4
2013-12-27 20
-
Vol. 3 No. 3
2013-07-24 13
-
Vol. 3 No. 2
2013-05-16 9
-
Vol. 3 No. 1
2013-02-14 11
Main Article Content
DOI
Authors
Abstract
This paper presents the results of the effect studies of the magnetic field on the paramagnetic, flowing liquid. In the area of direct magnetic field the eddy currents in flowing liquid are induced. The induced currents affect the distribution of the magnetic field in the area where the liquid flows. The interaction of induced currents and magnetic fields affect changes in the direction of movement of the liquid and pressure changes in the liquid. The article presents the results of the calculations of the magnetic field, changes of the direction of flowing liquids, and pressure changes in the modelled liquid. Calculations were run in the Comsol Multiphysics.
Keywords:
References
Alexiou Ch., Arnold W., Klein R. J., et al.: Locoregional Cancer Treatment with Magnetic Drug Targeting Cancer Research 60, 2000, p. 6641-6648.
AvilésaM, Chenb H, Ebner A., et al.: In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting, Journal of Magnetism and Magnetic Materials, Volume 311, Issue 1, 2007, p. 306–311.
Chen H, Ebner A., Bockenfeld D., et al.: A comprehensive in vitro investigation of a portable magnetic separator device for human blood detoxification, Physics in Medicine And Biology 52, 2007, p. 6053–6072.
Cieśla A.: Field distribution in separator's working space for various winding configuration, Przegląd Elektrotechniczny, 87 nr 7, 2011, s. 99–103.
Cieśla A.: Magnetic separation of kaolin clay using free helium superconducting magnet, Przegląd Elektrotechniczny, 88 nr 12b, 2012, s. 50–53.
Cieśla A.: Superconducting magnet of free helium type used for the filtration in environmental processing, Przegląd Elektrotechniczny, 86, nr 5, 2010, s. 181–184.
Furlani E P.: Magnetophoretic separation of blood cells at the microscale, Journal of Physics D: Applied Physics 40, 2007, p. 1313–1319.
Ganguly R., Gaind A., et al.: Analyzing ferrofluid transport for magnetic drug targeting Journal of Magnetism and Magnetic Materials 289, 2005, p. 331–334.
Haverkort J. W., Kenjeres S., Kleijn C. R.: Computational Simulations of Magnetic Particle Capture in Arterial Flows, Annals of Biomedical Engineering 2009.
Haverkort J. W., Kenjereš S., Kleijn C. R.: Magnetic particle motion in a Poiseuille flow Physical Review E 80, 016302, 2009.
Johannsen M., Thiesen B, Jordan A.: Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model The Prostate 64, 3, 2005, p. 283–292.
Kakihara Y., Fukunishi T., Takeda S., Nishijima S., Nakahira A.: Superconducting high gradient magnetic separation for purification of wastewater from paper factory Applied Superconductivity, IEEE Transactions on 14, Issue: 2, 2004, p. 1565 – 1567.
Laurent S., Dutz S., Häfeli U., Mahmoudi M.: Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles Advances in Colloid and Interface Science Volume 166, Issues 1–2, 2011, p. 8–23.
Lübbe A.S. et al.: Preclinical Experiences with Magnetic Drug Targeting: Tolerance and Efficacy Cancer Research 56, 1996, p. 4694-4701.
Nishijima S., Takeda S., Mishima F., et al.: A Study of Magnetic Drug Delivery System Using Bulk High Temperature Superconducting Magnet IEEE Transactions on applied superconductivity, vol. 18, no. 2, 2008.
Odenbach S.: Recent progress in magnetic fluid research, Journal Of Physics: Condensed Matter 16, 2004, p. 1135–1150.
Pamme N.: Continuous flow separations in microfluidic devices Lab Chip, 2007, 7, p. 1644–1659.
Pamme N.: Magnetism and microfluidics Lab Chip, 2006, 6, p. 24–38.
Skowron M.: Modelowanie i analiza pola magnetycznego w nietypowych układach współrzędnych, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 1, 2013, s. 47–48.
Tartaj P., Puerto Morales M, Veintemillas-Verdaguer S, Gonzalez-Carreno T. Serna C. J.: The preparation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics 36, 2003, p. 182–197.
Vander Sloten J., Verdonck P., Nyssen M., Haueisen J.: Optimizing drug delivery using non-uniform magnetic fields: a numerical study ECIFMBE 2008, IFMBE Proceedings 22, 2008, p. 2623–2627.
Article Details
Abstract views: 293
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
