INCREASING THE COST-EFFECTIVENESS OF IN VITRO RESEARCH THROUGH THE USE OF TITANIUM IN THE DEVICE FOR MEASURING THE ELECTRICAL PARAMETERS OF CELLS

Dawid Zarzeczny

dawid.adrian.zarzeczny@gmail.com
Lublin University of Technology, Department of Electrical Engineering and Electrotechnologies (Poland)
http://orcid.org/0000-0003-2029-9962

Abstract

Currently, various methods are used to assess the biocompatibility of materials. After an in-depth and detailed review of the literature, the method used in the research was selected. As part of the experiments, a method based on the analysis of the values ​​of electrical parameters of cell cultures measured in the presence of electrodes was used. The electrode is a structure made of a thin layer of metallization. It measures the change in resistance, impedance and capacity of a mixture of cells and the substance in which they are grown. The plate containing the electrode assembly is called the measurement matrix. Currently, commercially used test matrices are made of gold or platinum. However, their high price means that large-scale research is significantly limited. In order to increase the access to the widespread use of this method, it was decided that it was necessary to use cheaper materials, reducing the necessary costs of conducting experiments. Considering this, an attempt was made to use a different conductive material to build matrices compatible with the ECIS® Z-Theta measurement system. Their use would enable in vitro research on living cells. In the presented work, titanium was used as a material that may turn out to be an alternative to the materials currently used. Its application to the production of matrices will allow to study the influence of this metal on the behavior of cells.


Keywords:

bioimpedance, titanium, MEMS, thin films

Ananth H., Kundapur V., Mohammed H. S., Anand M., Amarnath G. S., Mankar S.: A review on biomaterials in dental implantology. International Journal of Biomedical Science 11(3), 2015, 113–120.
  Google Scholar

Applied BioPhysics, Inc., Product Guide, [https://www.biophysics.com/whatIsECIS.php] (available: 26.11.2021).
  Google Scholar

Gangadoo S., Chapman J.: Emerging biomaterials and strategies for medical applications: A review. Materials Technology 30, 2015, B3–B7 [http://doi.org/10.1179/1753555714Y.0000000206].
DOI: https://doi.org/10.1179/1753555714Y.0000000206   Google Scholar

Giaever I., Keese C. R.: Electric Cell-Substrate Impedance Sensing and Cancer Metastasis. Springer 17, 2012, 1–19 [http://doi.org/10.1007/978-94-007-4927-6_1].
DOI: https://doi.org/10.1007/978-94-007-4927-6_1   Google Scholar

Jiang G.: Design challenges of implantable pressure monitoring system. Frontiers in Neuroscience 4, 2010, 1–4
  Google Scholar

[http://doi.org/10.3389/neuro.20.002.2010].
DOI: https://doi.org/10.3389/neuro.20.002.2010   Google Scholar

Kociubiński A., Zarzeczny D., Prendecka M., Pigoń D., Małecka-Massalska T.: Nichrome Capacitors on Polycarbonate Substrate for Monitoring Cell Culture Using Impedance Sensing Technique. Archives of Metallurgy and Materials 65, 2020, 493–496 [http://doi.org/10.24425/amm.2020.131752].
  Google Scholar

Kociubiński A., Zarzeczny D., Szypulski M.: Kondensatory grzebieniowe z miedzi do monitorowania funkcji życiowych komórek hodowlanych. Przegląd Elektrotechniczny 1, 2018, 61–63 [http://doi.org/10.15199/48.2018.09.15].
DOI: https://doi.org/10.15199/48.2018.09.15   Google Scholar

Kociubiński A., Zarzeczny D.: Nickel comb capacitors for real-time monitoring of cancer cell cultures. Przegląd Elektrotechniczny 9, 2020, 149–152 [http://doi.org/10.15199/48.2020.09.31].
DOI: https://doi.org/10.15199/48.2020.09.31   Google Scholar

Kohane D. S., Langer R.: Biocompatibility and drug delivery systems. Chemical Science 1, 2010, 441–446 [http://doi.org/10.1039/c0sc00203h].
DOI: https://doi.org/10.1039/C0SC00203H   Google Scholar

Langer R., Tirrell D. A.: Designing materials for biology and medicine. Nature 428, 2004, 487–492 [http://doi.org/10.1038/nature02388].
DOI: https://doi.org/10.1038/nature02388   Google Scholar

Meng E., Sheybani R.: Insight: implantable medical devices. Lab on a Chip 14, 2014, 3233–3240 [http://doi.org/10.1039/C4LC00127C].
DOI: https://doi.org/10.1039/C4LC00127C   Google Scholar

Menzies K. L., Jones L.: The Impact of Contact Angle on the Biocompatibility of Biomaterials. Optometry and Vision Science 87, 2010, 387–399 [http://doi.org/10.1097/OPX.0b013e3181da863e].
DOI: https://doi.org/10.1097/OPX.0b013e3181da863e   Google Scholar

Onuki Y., Bhardwaj U., Papadimitrakopoulos F., Burgess D. J.: A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response. Journal of Diabetes Science and Technology 2, 2008, 1003–1015 [http://doi.org/10.1177/193229680800200610].
DOI: https://doi.org/10.1177/193229680800200610   Google Scholar

Patro S. G. K., Sahu K. K.: Normalization: A Preprocessing Stage. IARJSET 2(3), 2015, 20–22 [http://doi.org/10.17148/iarjset.2015.2305].
DOI: https://doi.org/10.17148/IARJSET.2015.2305   Google Scholar

Pennington M. R., Walle G. R. Van de, Smith G. A.: Electric Cell-Substrate Impedance Sensing To Monitor Viral Growth and Study Cellular Responses to Infection with Alphaherpesviruses in Real Time. MSphere 2, 2017, 1–12 [http://doi.org/10.1128/mSphere.00039-17].
DOI: https://doi.org/10.1128/mSphere.00039-17   Google Scholar

PN-EN ISO 10993-1:2010 Biologiczna ocena wyrobów medycznych, 2015, http://www.urpl.gov.pl/en/node/267 (available:26.11.2021).
  Google Scholar

Porta M.: A Dictionary of Epidemiology (6 ed.). Oxford University Press, Oxford 2014 [http://doi.org/10.1093/acref/9780199976720.001.0001].
DOI: https://doi.org/10.1093/acref/9780199976720.001.0001   Google Scholar

Prendecka M., Małecka-Massalska T., Mlak R., Magdalena J., Osińska-Jaroszuk M., Jakubiak-Hulicz M., Leibold C., Bieser A., Wójcik W.: Effect of exopolysaccharide from Ganoderma applanatum on the electrical properties of mouse fibroblast cells line L929 culture using an electric cel-substrate impedance sensing (ECIS). Annals of Agricultural and Environmental Medicine 23, 2016, 293–297 [http://doi.org/10.5604/12321966.1203891].
DOI: https://doi.org/10.5604/12321966.1203891   Google Scholar

Rack H. J., Qazi J. I.: Titanium alloys for biomedical applications. Materials Science and Engineering C 26(8), 2006, 1269–1277 [http://doi.org/10.1016/j.msec.2005.08.032].
DOI: https://doi.org/10.1016/j.msec.2005.08.032   Google Scholar

Rozporządzenie Ministra Zdrowia z dnia 16 lutego 2016 r. w sprawie szczegółowych wymagań dotyczących planowania, prowadzenia, monitorowania i dokumentowania badania klinicznego wyrobu medycznego (Dz. U. z 2016 r. poz. 209).
  Google Scholar

Saini M.: Implant biomaterials: A comprehensive review. World Journal of Clinical Cases 3, 2015, 52–57 [http://doi.org/10.12998/wjcc.v3.i1.52].
DOI: https://doi.org/10.12998/wjcc.v3.i1.52   Google Scholar

Scholten K., Meng E.: Materials for microfabricated implantable devices: a review. Lab on a Chip 15, 2015, 4256–4272 [http://doi.org/10.1039/C5LC00809C].
DOI: https://doi.org/10.1039/C5LC00809C   Google Scholar

Stolwijk J. A., Matrougui K., Renken C. W., Trebak M.: Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements. Pflügers Archiv - European Journal of Physiology 467, 2015, 2193–2218 [http://doi.org/10.1007/s00424-014-1674-0].
DOI: https://doi.org/10.1007/s00424-014-1674-0   Google Scholar

Szulcek R., Bogaard H. J., van Nieuw Amerongen G. P.: Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility. Journal of Visualized Experiments 85, 2014, 1–12 [http://doi.org/10.3791/51300].
DOI: https://doi.org/10.3791/51300   Google Scholar

Veiga C., Davim J. P., Loureiro A. J. R.: Properties and applications of titanium alloys. Reviews on Advanced Materials Science 32, 2012, 133–148.
  Google Scholar

Voiculescu I., Li F., Nordin A. N.: Impedance Spectroscopy of Adherent Mammalian Cell Culture for Biochemical Applications: A Review. IEEE Sensors Journal 21, 2021, 5612–5627 [http://doi.org/10.1109/JSEN.2020.3041708].
DOI: https://doi.org/10.1109/JSEN.2020.3041708   Google Scholar

Walkowiak B.: Biomedyczne skutki kontaktu tkanki z implantem. Inżynieria Biomateriałów 7, 2004, 38–42.
  Google Scholar

Wegener J., Keese C. R., Giaever I.: Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experimental Cell Research 259, 2000, 158–166 [http://doi.org/10.1006/excr.2000.4919].
DOI: https://doi.org/10.1006/excr.2000.4919   Google Scholar

Wesolowski R. A., Wesolowski A. P., Petrova R. S.: Biomaterials. In: The World of Materials. Springer International Publishing, Cham 2020, 75–78 [http://doi.org/10.1007/978-3-030-17847-5_12].
DOI: https://doi.org/10.1007/978-3-030-17847-5_12   Google Scholar

Williams D. F.: On the mechanisms of biocompatibility. Biomaterials 29, 2008, 2941–2953 [http://doi.org/10.1016/j.biomaterials.2008.04.023].
DOI: https://doi.org/10.1016/j.biomaterials.2008.04.023   Google Scholar

Xiao C., Luong J. H. T.: On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnology Progress 19, 2003, 1000–1005 [http://doi.org/10.1021/bp025733x].
DOI: https://doi.org/10.1021/bp025733x   Google Scholar

Xu Y., Xie X., Duan Y., Wang L., Cheng Z., Cheng J.: A review of impedance measurements of whole cells. Biosensors and Bioelectronics 77, 2016, 824–836 [http://doi.org/10.1016/j.bios.2015.10.027].
DOI: https://doi.org/10.1016/j.bios.2015.10.027   Google Scholar

Zarzeczny D.: Projekt i technologia kondensatorów grzebieniowych do monitorowania hodowli komórek. In: Problemy Współczesnej Inżynierii – Wybrane zagadnienia elektroniki i inżynierii biomedycznej. Politechnika Lubelska, Lublin, 2017, 155–168, [http://bc.pollub.pl/Content/13165/PDF/sneie.pdf] (available: 26.11.2021).
  Google Scholar

Zarzeczny D. A.: Thin film capacitors made of various metals for impedance sensing technique. Proc. SPIE 11176, 2019, 1117654 [http://doi.org/10.1117/12.2536787].
DOI: https://doi.org/10.1117/12.2536787   Google Scholar

Download


Published
2021-12-20

Cited by

Zarzeczny, D. (2021). INCREASING THE COST-EFFECTIVENESS OF IN VITRO RESEARCH THROUGH THE USE OF TITANIUM IN THE DEVICE FOR MEASURING THE ELECTRICAL PARAMETERS OF CELLS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(4), 62–66. https://doi.org/10.35784/iapgos.2826

Authors

Dawid Zarzeczny 
dawid.adrian.zarzeczny@gmail.com
Lublin University of Technology, Department of Electrical Engineering and Electrotechnologies Poland
http://orcid.org/0000-0003-2029-9962

Statistics

Abstract views: 295
PDF downloads: 178


Most read articles by the same author(s)