FIBRE OPTIC BRAGG STRUCTURES WITH MONOTONIC APODISATION CHARACTERISTICS

Jacek Klimek

j.klimek@pollub.pl
Lublin University of Technology, Faculty Electrical Engineering and Computer Science (Poland)
http://orcid.org/0000-0001-8141-6136

Abstract

The article discusses the principle of operation and the structure of chirped and uniform gratings. It presents the method of producing gratings with monotonic apodisation characteristics, and compares the spectral features of produced gratings with the those obtained by mathematical modelling.


Keywords:

apodised Bragg gratings, optical fibre sensors, FBG, CFBG

Chehura E., James S. W., Tatam R. P.: Temperature and strain discrimination using a single tilted fibre Bragg grating. Optics Communications 275/2007, 344–347.
DOI: https://doi.org/10.1016/j.optcom.2007.03.043   Google Scholar

Dong B. et al.: Simultaneous measurement of temperature and force based on a special strain-function-chirped FBG. Sensors and Actuators A 147/2008, 169–172.
DOI: https://doi.org/10.1016/j.sna.2008.05.019   Google Scholar

Ecke W. et al.: Optical fiber grating sensor network for monitoring refractive index and temperature distributions in fluids. Proc. SPIE 3783/1999, 176–183.
DOI: https://doi.org/10.1117/12.365735   Google Scholar

Ennser, K., Zervas, N., Laming, R. L.: Optimization of apodized linearly chirped fiber gratings for optical communications. IEEE Journal of Quantum Electronics 34(5)/1998, 770–778.
DOI: https://doi.org/10.1109/3.668763   Google Scholar

Gillooly A. M. et al.: Implementation Of Chirped Fiber Bragg Gratings (CFBG) As Optical Wear Sensors. Lasers and Electro-Optics Society, The 16th Annual Meeting of the IEEE 2003.
  Google Scholar

Guo T.: Fiber Grating-Assisted Surface Plasmon Resonance for Biochemical and Electrochemical Sensing. Journal of Lightwave Technology 35(16)/2017, 3323–3333.
DOI: https://doi.org/10.1109/JLT.2016.2590879   Google Scholar

Hill K., Meltz G.: Fibre Bragg grating technology fundamentals and overview. Jr. Lightwave Techno. 15/1997, 1263–1276.
DOI: https://doi.org/10.1109/50.618320   Google Scholar

Hwang G. S. et al.: Numerical Study on Reflection Spectra of an Apodized Fiber Bragg Grating Subjected to Strain Gradients. Procedia Engineering 79/2014, 631–639.
DOI: https://doi.org/10.1016/j.proeng.2014.06.390   Google Scholar

Khalid K. S. et al.: Simulation and analysis of Gaussian apodized fiber Bragg grating strain sensor. Journal of Optical Technology 79(10)/2012, 667–673.
DOI: https://doi.org/10.1364/JOT.79.000667   Google Scholar

Kinet D. et al.: Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions. Sensors 14/2014, 7394–7419.
DOI: https://doi.org/10.3390/s140407394   Google Scholar

Kisała P.: Metrological conditions of strain measurement optoelectronic method by the use of fibre Bragg gratings. Metrology and Measurement Systems 19(3)/2012, 471–480.
DOI: https://doi.org/10.2478/v10178-012-0040-9   Google Scholar

Kisala P., Cieszczyk S.: Method of simultaneous measurement of two direction force and temperature using FBG sensor head. Applied Optics 54(10)/2015.
DOI: https://doi.org/10.1364/AO.54.002677   Google Scholar

Lin Z. et al.: A novel method for fabricating apodized fiberber Bragg gratings. Optics and Laser Technology 35/2003, 315–318.
DOI: https://doi.org/10.1016/S0030-3992(03)00027-6   Google Scholar

Markowski K. et al.: Custom FBGs inscription using modified phase mask method with precise micro- and nano-positioning. Proc. of SPIE, Vol. 10031/2016.
DOI: https://doi.org/10.1117/12.2249381   Google Scholar

Waluyo T. et al.: The effect of macro-bending on power confinement factor in single mode fiber Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 985, 3rd International Symposium on Frontier of Applied Physics (ISFAP 2017), Jakarta, Indonesia (2017)
DOI: https://doi.org/10.1088/1742-6596/985/1/011001   Google Scholar

Weilin L. et al.: Real-Time Interrogation of a Linearly Chirped Fiber Bragg Grating Sensor for Simultaneous Measurement of Strain and Temperature. IEEE Photonics Technology Letters 23(18)/2011, 1340–1342.
DOI: https://doi.org/10.1109/LPT.2011.2160624   Google Scholar

Zhan Y. et al.: A linearity interrogation technique with enlarged dynamic range for fiber Bragg grating sensing. Optics Communications 283/2010, 3428–3433.
DOI: https://doi.org/10.1016/j.optcom.2010.04.095   Google Scholar

Zhang H.: A novel method of optimal apodization selection for chirped fiber Bragg gratings. Optik - International Journal for Light and Electron Optics 125(5)/2014, 1646–1649.
DOI: https://doi.org/10.1016/j.ijleo.2013.09.066   Google Scholar

Zychowicz Ł. et al.: Methods of producing apodized fiber Bragg gratings and examples of their applications. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 89(1)/2018, 60–63.
  Google Scholar

Download


Published
2021-12-20

Cited by

Klimek, J. (2021). FIBRE OPTIC BRAGG STRUCTURES WITH MONOTONIC APODISATION CHARACTERISTICS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(4), 42–46. https://doi.org/10.35784/iapgos.2828

Authors

Jacek Klimek 
j.klimek@pollub.pl
Lublin University of Technology, Faculty Electrical Engineering and Computer Science Poland
http://orcid.org/0000-0001-8141-6136

Statistics

Abstract views: 242
PDF downloads: 144