METHODS OF PRODUCING APODIZED FIBER BRAGG GRATINGS AND EXAMPLES OF THEIR APPLICATIONS
Łukasz Zychowicz
lukas.zychowicz@gmail.comLublin University of Technology, Institute of Electronics and Information Technology (Poland)
Jacek Klimek
Lublin University of Technology, Institute of Electronics and Information Technology (Poland)
Piotr Kisała
Lublin University of Technology, Institute of Electronics and Information Technology (Poland)
Abstract
The paper presents the principle of operation, the structure, applications and methods of producing uniform, chirped and blazed fiber Bragg gratings as well as long period gratings. Finally, several selected methods used to make apodized gratings are listed and described.
Keywords:
apodized fiber Bragg grating, uniform Bragg grating, chirped Bragg grating, long-period grating, blazed Bragg gratingReferences
Aladadi Y.T., Abas A.F., Alresheedi M.T.: Performance Optimization of an Apodized-Chirped Fiber Bragg Gratings Based Chromatic Dispersion Compensator. IEEE ICTON 2016, 1–5.
Google Scholar
Ashik T.J. et al.: Analysis of simultaneous measurement of temperature and strain using different combinations of FBG. AIP Conf. Proc. 1849, 2017, 020031-1–020031-8.
Google Scholar
Ashrafi R., Asghari M.H., Azana J.: Ultrafast Optical Arbitrary-Order Differentiators Based on Apodized Long-Period Gratings. IEEE Photonics Journal, vol. 3, no 3, 2011, 353–364.
Google Scholar
Bandyopadhyay S. et al.: Empirical Relations for Design of Linear Edge Filters Using Apodized Linearly Chirped Fiber Bragg Grating. Journal of Lightwave Technology, vol. 26, no. 24, 2008, 3853–3859.
Google Scholar
Beak S., Jeong Y., Lee B.: Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors. Optical Society of America, vol. 41, no. 4, 2002, 631–636.
Google Scholar
Campbell R.J., Kashyap R.: Optically written Bragg gratings in photosensitive fibre. IEE Colloquium on Non-Linear Effects in Fibre Communications, 1990, 4/1–4/3.
Google Scholar
Dziubiński G. et al.: Optymalizacja parametrów światłowodowych czujników do pomiaru temperatury. Annual Set The Environment Protection 18/2016, 309–324.
Google Scholar
Faiyaz N.M., Omi A.I., Faisal M.: Optimization of Apodization Profile of Chirped Fiber Bragg Grating for Chromatic Dispersion Comensation, Dispersion Compensation Using Chirped Apodized FBG. International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) 2014, 1–5
Google Scholar
Gu Y., Chiang K. S., Rao Y. J.: Writing of Apodized Phase-Shifted Long-Period Fiber Gratings With a Computer-Controlled CO2 Laser. IEEE Photonics Technology Letters, vol. 21, no. 10, 2009, 657–659.
Google Scholar
Hill K.O., Fujii Y., Johanson D.C., Kawasaki B.S.: Photosensivity in optical fiber waveguides: aplication to reflection filter fabrication. Appl. Phys. Lett. 32, 647, 1978, 647–649.
Google Scholar
James S.W., Tatam R.P.: Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14, 2003, 49–61.
Google Scholar
James S.W., Topliss S.M., Tatam R.P.: Properties of Length-Apodized Phase-Shifted LPGs Operating at the Phase Matching Turning Point. Journal of Lightwave Technology, vol. 30, no. 13, 2012, 2203–2209.
Google Scholar
Kaczmarek Z.: Światłowodowe czujniki i przetworniki pomiarowe. PAK, Warszawa 2006.
Google Scholar
Kashyap R., Wyatt R., Campbell R.J.: Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating. Electronics Letters 21st, vol. 29, no. 2, 1993, 154–156.
Google Scholar
Kashyap R.: Fiber Bragg Gratings. Academic Press, 1999.
Google Scholar
Khan S.S.A., Islam M.S.: Chromatic Dispersion Compensation Using Linearly Chirped Apodized Fiber Bragg Grating. ICECE 2010, 9–12.
Google Scholar
Kisała P.: Periodyczne struktury światłowodowe w optoelektronicznych czujnikach do pomiaru wybranych wielkości nieelektrycznych. Monografie – Politechnika Lubelska 2012.
Google Scholar
Labidi H., Debarros C., Letteron R., Riant I.: Slanted Bragg grating with ultra-low polarization dependant loss. Optical Fiber Communication Conference and Exhibit 2002, 113.
Google Scholar
Lam D.K.W., Garside B.K., Hill K.O.: Dispersion cancellation using optical-fiber filters. Optical Society of America, vol. 7, no. 6, 1982, 291.
Google Scholar
Markowski K., Perka A., Jędrzejewski K., Osuch T.: Custom FBGs inscription using modified phase mask method with precise micro and nano-positioning. Proc. SPIE vol. 10031, 2016, 100311H [doi: 10.1117/12.2249381].
Google Scholar
Morey W.W., Meltz G., Weiss J.M.: Separation Of Temperature And Strain Measurands In Fiber Bragg Grating Sensors. LEOS '92 Conference Proceedings IEEE Lasers and Electro-Optics Society, 1992, 454–455.
Google Scholar
Osuch T., Jaroszewicz Z.: Influence of optical fiber location behind an apodized phase mask on Bragg grating reflection efficiencies at Bragg wavelength and its harmonics. Opt. Commun. 382, 2017, 36–41.
Google Scholar
Osuch T., Jaroszewicz Z.: Numerical analysis of apodized fiber Bragg gratings formation using phase mask with variable diffraction efficiency. Optics Communications, vol. 284, 2011, 567–572.
Google Scholar
Osuch T.: Numerical analysis of harmonic components of the Bragg wavelength content in spectral responses of apodized fiber Bragg gratings written by means of phase mask with variable phase step height, J. Opt. Soc. Am. A 33 (2), 2016, 172–178.
Google Scholar
Otto M. et al.: Flexible Manufacturing Method For Long-Period Fibre Gratings With Arbitrary Index Modulation Profiles. Fibre and Optical Passive Components, 2002, 6–11.
Google Scholar
Pastor D. et al.: Design of Apodized Linearly Chirped Fiber Gratings for Dispersion Compensation, Journal of Lightwave Technology, vol. 14, no. 11, 1996, 2581–2588.
Google Scholar
Sikora A.: Apodyzowane siatki Bragga o stałym okresie jako przetworniki odkształceń impulsowych. Analiza numeryczna. PAK, vol. 56, nr 12, 2010, 1436–1438.
Google Scholar
Stepniak P., Kisała P.: Analisys of impact long period Bragg gratings parameters on their special transmission characteristics. Proc. SPIE 10445, 2017, 104450G [doi: 10.1117/12.2280868].
Google Scholar
Theriault S. et al.: Effect of phase mask stitching errors on the spectral response of uniform and apodized fiber Bragg gratings. 8th Annual Meeting Conference Proceedings, vol. 1, 1995, 77–78.
Google Scholar
Wagner J.L. et al: Fiber Grating Optical Spectrum Analyzer Tap. Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications, no. 448, 1997, 65–68 [doi: 10.1049/cp:19971613].
Google Scholar
Wang L. et al.: Impact of apodisation functions on group delay and reflectivity ripple of chirped fiber Bragg gratings. Optoelectronics Letters, vol. 2, no. 6, 2006, 430–432.
Google Scholar
Williams R. et al.: Modeling of apodized point-by-point fiber-Bragg gratings. 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology, 133–135.
Google Scholar
Wójcik W., Kisała P.: Modelowanie struktur światłowodowych siatek Bragga wykorzystywanych w układach czujnikowych. PAK vol. 53, no.11, 2007, 10–14.
Google Scholar
Yu Y., Zhenhong Y.: Performance optimization of chirped fiber Bragg gratings by asymmetrical apodization. Proc. of the SPIE 10250, 2017, 1025003–6.
Google Scholar
Authors
Łukasz Zychowiczlukas.zychowicz@gmail.com
Lublin University of Technology, Institute of Electronics and Information Technology Poland
Authors
Jacek KlimekLublin University of Technology, Institute of Electronics and Information Technology Poland
Authors
Piotr KisałaLublin University of Technology, Institute of Electronics and Information Technology Poland
Statistics
Abstract views: 332PDF downloads: 8577
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Łukasz Zychowicz, THE METHOD OF DETECTING INHOMOGENEITIES AND DEFECTS IN MATERIALS USING SENSORS BASED ON THE FIBER BRAGG OPTIC STRUCTURES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 3 (2019)
- Jacek Klimek, FIBRE OPTIC BRAGG STRUCTURES WITH MONOTONIC APODISATION CHARACTERISTICS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 11 No. 4 (2021)
- Tomasz Zieliński, Łukasz Zychowicz, ANALISYS OF THE INFLUENCE OF GLUE JOINTS ON THE MEASUREMENT OF PHYSICAL PROPERTIES OF STRUCTURAL ELEMENTS USING FIBER BRAGG GRATING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Tomasz Zieliński, Piotr Kisała, ANALYSIS OF METROLOGICAL PROPERTIES FIBER BRAGG GRATINGS WITH A CONSTANT AND VARIABLE PERIOD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 2 (2018)
- Damian Harasim, Piotr Kisała, INTERROGATION SYSTEMS FOR MULTIPLEXED FIBER BRAGG SENSORS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 4 (2015)
- Żaklin Grądz, Jacek Klimek, Czesław Kozak, FLAME ANALYSIS BY SELECTED METHODS IN THE FREQUENCY DOMAIN , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 4 (2022)
- Piotr Kisała, Paweł Wiśniewski, NUMERICAL STUDY OF THE POSSIBILITY OF USING ADHESIVE JOINTS FOR INDIRECT MEASUREMENTS FOR STRESS DISTRIBUTION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 2 (2024)