MODEL OF THE FLAT FAIRING ANTENNA DIELECTRIC LAYER WITH AERODYNAMIC HEATING
Article Sidebar
Open full text
Issue Vol. 13 No. 4 (2023)
-
A USAGE OF THE IMPEDANCE METHOD FOR DETECTING CIRCULATORY DISORDERS TO DETERMINE THE DEGREE OF LIMB ISCHEMIA
Valerіi Kryvonosov, Oleg Avrunin, Serhii Sander, Volodymyr Pavlov, Liliia Martyniuk, Bagashar Zhumazhanov5-10
-
USAGE OF ARTIFICIAL NEURAL NETWORKS IN THE DIAGNOSIS OF KNEE JOINT DISORDERS
Konrad Witkowski, Mikołaj Wieczorek11-14
-
COMPREHENSIVE MACHINE LEARNING AND DEEP LEARNING APPROACHES FOR PARKINSON'S DISEASE CLASSIFICATION AND SEVERITY ASSESSMENT
Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch15-20
-
AI EMPOWERED DIAGNOSIS OF PEMPHIGUS: A MACHINE LEARNING APPROACH FOR AUTOMATED SKIN LESION DETECTION
Mamun Ahmed, Salma Binta Islam, Aftab Uddin Alif, Mirajul Islam, Sabrina Motin Saima21-26
-
OPTIMIZING ULTRASOUND IMAGE CLASSIFICATION THROUGH TRANSFER LEARNING: FINE-TUNING STRATEGIES AND CLASSIFIER IMPACT ON PRE-TRAINED INNER-LAYERS
Mohamed Bal-Ghaoui, My Hachem El Yousfi Alaoui, Abdelilah Jilbab, Abdennaser Bourouhou27-33
-
A GENERATIVE MODEL FOR DEEP FAKE AUGMENTATION OF PHONOCARDIOGRAM AND ELECTROCARDIOGRAM SIGNALS USING LSGAN AND CYCLE GAN
Swarajya Madhuri Rayavarapu, Tammineni Shanmukha Prasanthi, Gottapu Santosh Kumar, Gottapu Sasibhushana Rao, Gottapu Prashanti34-38
-
SMART OPTIMIZER SELECTION TECHNIQUE: A COMPARATIVE STUDY OF MODIFIED DENSNET201 WITH OTHER DEEP LEARNING MODELS
Kamaran Manguri, Aree A. Mohammed39-43
-
IMPROVEMENT OF THE ALGORITHM FOR SETTING THE CHARACTERISTICS OF INTERPOLATION MONOTONE CURVE
Yuliia Kholodniak, Yevhen Havrylenko, Serhii Halko, Volodymyr Hnatushenko, Olena Suprun, Tatiana Volina, Oleksandr Miroshnyk, Taras Shchur44-50
-
AN ANALYSIS OF THE IMPLEMENTATION OF ACCESSIBILITY TOOLS ON WEBSITES
Marcin Cieśla, Mariusz Dzieńkowski51-56
-
INTERACTION METHOD BETWEEN WEBVIEW OBJECTS IN HYBRID JAVA APPLICATIONS
Denys Ratov, Oleh Zakhozhai57-60
-
BROWSERSPOT – A MULTIFUNCTIONAL TOOL FOR TESTING THE FRONT-END OF WEBSITES AND WEB APPLICATIONS
Szymon Binek, Jakub Góral61-65
-
ADVERTISING BIDDING OPTIMIZATION BY TARGETING BASED ON SELF-LEARNING DATABASE
Roman Kvуetnyy, Yuriy Bunyak, Olga Sofina, Oleksandr Kaduk, Orken Mamyrbayev, Vladyslav Baklaiev, Bakhyt Yeraliyeva66-72
-
THE EFFICIENCY AND RELIABILITY OF BACKEND TECHNOLOGIES: EXPRESS, DJANGO, AND SPRING BOOT
Dominik Choma, Kinga Chwaleba, Mariusz Dzieńkowski73-78
-
CLOUD TECHNOLOGIES IN EDUCATION: THE BIBLIOGRAPHIC REVIEW
Artem Yurchenko, Anzhela Rozumenko, Anatolii Rozumenko, Roman Momot, Olena Semenikhina79-84
-
HYBRID BINARY WHALE OPTIMIZATION ALGORITHM BASED ON TAPER SHAPED TRANSFER FUNCTION FOR SOFTWARE DEFECT PREDICTION
Zakaria A. Hamed Alnaish, Safwan O. Hasoon85-92
-
USE OF THE CDE ENVIRONMENT IN TEAM COLLABORATION IN BIM
Andrzej Szymon Borkowski, Jakub Brożyna, Joanna Litwin, Weronika Rączka, Aleksandra Szporanowicz93-98
-
ASYMPTOTICALLY OPTIMAL ALGORITHM FOR PROCESSING SIDE RADIATION SIGNALS FROM MONITOR SCREENS ON LIQUID CRYSTAL STRUCTURES
Dmytro Yevgrafov, Yurii Yaremchuk99-102
-
AC POWER REGULATION TECHNIQUES FOR RENEWABLE ENERGY SOURCES
Mariusz Ostrowski103-108
-
AUTOMATIC ADJUSTMENT OF REACTIVE POWER BY FACTS DEVICES UNDER CONDITIONS OF VOLTAGE INSTABILITY IN THE ELECTRIC NETWORK
Mykhailo Burbelo, Oleksii Babenko, Yurii Loboda, Denys Lebed, Oleg K. Kolesnytskyj, Saule J. Rakhmetullina, Murat Mussabekov109-113
-
VENTILATION CONTROL OF THE NEW SAFE CONFINEMENT OF THE CHORNOBYL NUCLEAR POWER PLANT BASED ON NEURO-FUZZY NETWORKS
Petro Loboda, Ivan Starovit, Oleksii Shushura, Yevhen Havrylko, Maxim Saveliev, Natalia Sachaniuk-Kavets’ka, Oleksandr Neprytskyi, Dina Oralbekova, Dinara Mussayeva114-118
-
MODEL OF THE FLAT FAIRING ANTENNA DIELECTRIC LAYER WITH AERODYNAMIC HEATING
Valerii Kozlovskiy, Valeriy Kozlovskiy, Oleksii Nimych, Lyudmila Klobukova, Natalia Yakymchuk119-125
-
MICROWAVE MIXER ON RECTANGULAR WAVEGUIDES PARTIALLY FILLED BY DIELECTRIC
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova126-131
-
INFORMATION SYSTEM FOR DIAGNOSTIC COMPETITIVENESS OF THE HOSPITALITY INDUSTRY OF THE REGIONS OF UKRAINE
Liudmyla Matviichuk, Olena Liutak, Yuliia Dashchuk, Mykhailo Lepkiy, Svitlana Sidoruk132-138
-
ENVIRONMENTAL AND ECONOMIC ASSESSMENT OF THE LAND USE REGULATION EFFECTIVENESS
Oleksandr Harnaha, Nataliia B. Savina, Volodymyr Hrytsiuk139-141
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
To protect the antenna systems of modern aircraft, radio-transparent dielectric fairings are widely used. At low flight speeds, when designing and evaluating the characteristics of the fairing-antenna, it is assumed that the dielectric constant is a constant value and does not depend on the aircraft's flight speed. As the flight speed increases, as a result of aerodynamic heating of the fairing, its dielectric permeability changes, which leads to errors in the processing of received signals. Currently, to take into account the effect of dielectric coatings heating when designing antenna systems, the temperature of the fairing wall is averaged over its thickness. This method during maneuvering and at high flight speeds leads to large errors in determining the characteristics of the fairing antenna since the nature of the temperature distribution along the thickness of the fairing wall is not taken into account. A new approach to the analysis of dielectric layers with their uneven heating along the thickness is proposed. The obtained results make it possible to adjust the signal processing algorithms with analog and digital matrices, as a result of taking into account the emerging heat flows affecting the fairing of the aviation antenna, which leads to the improvement of the characteristics of the antenna systems.
Keywords:
References
Akan V., Yazgan E.: Antennas for Space Applications: A Review. Advanced Radio Frequency Antennas for Modern Communication and Medical Systems, IntechOpen, 2020, [http://doi.org/10.5772/intechopen.93116]. DOI: https://doi.org/10.5772/intechopen.93116
Chahat N.: A mighty antenna from a tiny CubeSat grows. IEEE Spectrum 55, 2018, 33–37 [http://doi.org/10.1109/MSPEC.2018.8278134]. DOI: https://doi.org/10.1109/MSPEC.2018.8278134
Deng J., Zhou G., Qiao Y.: Multidisciplinary design optimization of sandwich-structured radomes. Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233(1), 2019, 179-189 [http://doi.org/10.1177/0954406218757268]. DOI: https://doi.org/10.1177/0954406218757268
Dippong T. et al.: Thermal behavior of Ni, Co and Fe succinates embedded in silica matrix. J. Therm. Analysis. Calorim. 136, 2019, 1587–1596 [http://doi.org/10.1007/s10973-019-08117-8]. DOI: https://doi.org/10.1007/s10973-019-08117-8
Escalera A. S. et al.: Effects of Radome Design on Antenna Performance in Transonic Flight Conditions. AIAA 2020-2187. AIAA Scitech 2020 Forum, 2020 [http://doi.org/10.2514/6.2020-2187]. DOI: https://doi.org/10.2514/6.2020-2187
Gilchuk A. V., Khalatov A. A.: Theory of thermal conductivity. NTUU KPI named after Igor Sikorsky, 2017.
Grinevich A. V., Lavrov A. V.: Evaluation of the ballistic characteristics of ceramic materials. Proceedings of VIAM 3(63), 2018, 95–102 [http://doi.org/10.18577/2307-6046-2018-0-3-95-102]. DOI: https://doi.org/10.18577/2307-6046-2018-0-3-95-102
Gyulmagomedov N. K.: Influence of the radiotransparent radome on characteristics of radar station. AIP Conference Proceedings 2318, 2021, 180001 [http://doi.org/10.1063/5.0036566]. DOI: https://doi.org/10.1063/5.0036566
Korn G.: Handbook of mathematics for scientists and engineers: Definitions, theorems, formulas. Book on Demand, 2014.
Li H. Y. et al.: Ameliorated Mechanical and Dielectric Properties of Heat-Resistant Radome Cyanate Composites. Molecules 25, 2020, 3117.
Li H. Y. et al: Ameliorated Mechanical and Dielectric Properties of Heat-Resistant Radome Cyanate Composites. Molecules 25(14), 2020, 3117 [http://doi.org/10.3390/molecules25143117]. DOI: https://doi.org/10.3390/molecules25143117
Lu Y. et al.: A Study on the Electromagnetic–Thermal Coupling Effect of CrossSlot Frequency Selective Surface. Materials 15, 2022, 640 [http://doi.org/10.3390/ma15020640]. DOI: https://doi.org/10.3390/ma15020640
Meyer G. J.: Polyurethane Foam: Dielectric Materials for Use in Radomes and Other Applications. General Plastics Manufacturing Company, 2015.
Nair R. U. et al.: Temperature-dependent electromagnetic performance predictions of a hypersonic streamlined radome. Prog. electromagn. Res. 154, 2015, 65–78.
Narendara S., Gopikrishna R.: Evaluation of structural integrity of tactical missile ceramic radomes under combined thermal and structural loads. Procedia Structural Integrity 14, 2019, 89–95. DOI: https://doi.org/10.1016/j.prostr.2019.05.012
NASA Outgassing Data for Selecting Spacecraft Materials, https://outgassing.nasa.gov (available: April 20, 2020).
Öziş E. et al.: Metamaterials for Microwave Radomes and the Concept of a Metaradome: Review of the Literature. International Journal of Antennas and Propagation 2017, ID1356108 [http://doi.org/10.1155/2017/1356108]. DOI: https://doi.org/10.1155/2017/1356108
Plonus M.: Electronics and Communications for Scientists and Engineers, 2020, [http://doi.org/10.1016/C2018-0-00442-9]. DOI: https://doi.org/10.1016/C2018-0-00442-9
Raveendranath U. N. et al.: Temperature-Dependent Electromagnetic Perfor-mance Predictions of a Hypersonic Streamlined Radome. Progress In Electromagnetics Research 154, 2015, 65–78. DOI: https://doi.org/10.2528/PIER15052602
Romashin A. G. et al.: Radiotransparent fairings for aircraft. National Aerospace University, Kharkov 2003.
Seckin S. et al.: Dielectric Properties of Low-Loss Polymers for mmW and THz Applications. International Journal of Infrared and Millimeter Waves 40, 2019, 557–573 [http://doi.org/10.1007/s10762-019-00584-2]. DOI: https://doi.org/10.1007/s10762-019-00584-2
Tahseen H. U. et al.: Design of FSS-antenna-radome system for airborne and ground applications. LET Communications, 2021 [http://doi.org/10.1049/cmu2.12181].
Tahseen H. U. et al.: Design of FSS-antenna-radome system for airborne and ground applications. IET Commun. 2021, 15, 1691–1699, [http://doi.org/10.1049/cmu2.12181]. DOI: https://doi.org/10.1049/cmu2.12181
Xu W. et al.: Study on the electromagnetic performance of inhomogeneous radomes for airborne applications part 1: Characteristics of phase distortion and boresight error. IEEE Transactions on Antennas and Propagation 65(6), 2017, 3162–3174. DOI: https://doi.org/10.1109/TAP.2017.2694489
Ya M. et al.: Physics of heating microwave dielectrics of aircraft and their protection. SSGA, Novosibirsk 2008.
Zhang H. X. et al.: Massively Parallel Electromagnetic–Thermal Cosimulation of Large Antenna Arrays. IEEE Antennas Wire. Propag. Lett. 19, 2020, 1551–1555. DOI: https://doi.org/10.1109/LAWP.2020.3009164
Article Details
Abstract views: 331
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Natalia Yakymchuk, Lutsk National Technical University, Faculty of Computer and Information Technologies
Assistant of the Department of Electronics and Telecommunications, Faculty of Computer and Information Technologies, Lutsk National Technical University, Lutsk, Ukraine
