MODEL OF THE FLAT FAIRING ANTENNA DIELECTRIC LAYER WITH AERODYNAMIC HEATING
Valerii Kozlovskiy
National Technical University of Ukraine "Kyiv Polytechnic Institute named after Igor Sikorsky", Institute of Special Communications and Information Protection (Ukraine)
https://orcid.org/0000-0003-0234-415X
Valeriy Kozlovskiy
National Aviation University, Faculty of Cybersecurity, Computer and Software Engineering (Ukraine)
https://orcid.org/0000-0002-8301-5501
Oleksii Nimych
National Aviation University, Faculty of Cybersecurity, Computer and Software Engineering (Ukraine)
https://orcid.org/0000-0003-1759-7088
Lyudmila Klobukova
National Aviation University, Faculty of Cybersecurity, Computer and Software Engineering (Ukraine)
https://orcid.org/0000-0001-9799-4387
Natalia Yakymchuk
n.yakymchuk@lntu.edu.uaLutsk National Technical University, Faculty of Computer and Information Technologies (Ukraine)
https://orcid.org/0000-0002-8173-449X
Abstract
To protect the antenna systems of modern aircraft, radio-transparent dielectric fairings are widely used. At low flight speeds, when designing and evaluating the characteristics of the fairing-antenna, it is assumed that the dielectric constant is a constant value and does not depend on the aircraft's flight speed. As the flight speed increases, as a result of aerodynamic heating of the fairing, its dielectric permeability changes, which leads to errors in the processing of received signals. Currently, to take into account the effect of dielectric coatings heating when designing antenna systems, the temperature of the fairing wall is averaged over its thickness. This method during maneuvering and at high flight speeds leads to large errors in determining the characteristics of the fairing antenna since the nature of the temperature distribution along the thickness of the fairing wall is not taken into account. A new approach to the analysis of dielectric layers with their uneven heating along the thickness is proposed. The obtained results make it possible to adjust the signal processing algorithms with analog and digital matrices, as a result of taking into account the emerging heat flows affecting the fairing of the aviation antenna, which leads to the improvement of the characteristics of the antenna systems.
Keywords:
aviation antenna, dielectric layer, aerodynamic heating, wave resistance, quadrupoleReferences
Akan V., Yazgan E.: Antennas for Space Applications: A Review. Advanced Radio Frequency Antennas for Modern Communication and Medical Systems, IntechOpen, 2020, [http://doi.org/10.5772/intechopen.93116].
DOI: https://doi.org/10.5772/intechopen.93116
Google Scholar
Chahat N.: A mighty antenna from a tiny CubeSat grows. IEEE Spectrum 55, 2018, 33–37 [http://doi.org/10.1109/MSPEC.2018.8278134].
DOI: https://doi.org/10.1109/MSPEC.2018.8278134
Google Scholar
Deng J., Zhou G., Qiao Y.: Multidisciplinary design optimization of sandwich-structured radomes. Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233(1), 2019, 179-189 [http://doi.org/10.1177/0954406218757268].
DOI: https://doi.org/10.1177/0954406218757268
Google Scholar
Dippong T. et al.: Thermal behavior of Ni, Co and Fe succinates embedded in silica matrix. J. Therm. Analysis. Calorim. 136, 2019, 1587–1596 [http://doi.org/10.1007/s10973-019-08117-8].
DOI: https://doi.org/10.1007/s10973-019-08117-8
Google Scholar
Escalera A. S. et al.: Effects of Radome Design on Antenna Performance in Transonic Flight Conditions. AIAA 2020-2187. AIAA Scitech 2020 Forum, 2020 [http://doi.org/10.2514/6.2020-2187].
DOI: https://doi.org/10.2514/6.2020-2187
Google Scholar
Gilchuk A. V., Khalatov A. A.: Theory of thermal conductivity. NTUU KPI named after Igor Sikorsky, 2017.
Google Scholar
Grinevich A. V., Lavrov A. V.: Evaluation of the ballistic characteristics of ceramic materials. Proceedings of VIAM 3(63), 2018, 95–102 [http://doi.org/10.18577/2307-6046-2018-0-3-95-102].
DOI: https://doi.org/10.18577/2307-6046-2018-0-3-95-102
Google Scholar
Gyulmagomedov N. K.: Influence of the radiotransparent radome on characteristics of radar station. AIP Conference Proceedings 2318, 2021, 180001 [http://doi.org/10.1063/5.0036566].
DOI: https://doi.org/10.1063/5.0036566
Google Scholar
Korn G.: Handbook of mathematics for scientists and engineers: Definitions, theorems, formulas. Book on Demand, 2014.
Google Scholar
Li H. Y. et al.: Ameliorated Mechanical and Dielectric Properties of Heat-Resistant Radome Cyanate Composites. Molecules 25, 2020, 3117.
Google Scholar
Li H. Y. et al: Ameliorated Mechanical and Dielectric Properties of Heat-Resistant Radome Cyanate Composites. Molecules 25(14), 2020, 3117 [http://doi.org/10.3390/molecules25143117].
DOI: https://doi.org/10.3390/molecules25143117
Google Scholar
Lu Y. et al.: A Study on the Electromagnetic–Thermal Coupling Effect of CrossSlot Frequency Selective Surface. Materials 15, 2022, 640 [http://doi.org/10.3390/ma15020640].
DOI: https://doi.org/10.3390/ma15020640
Google Scholar
Meyer G. J.: Polyurethane Foam: Dielectric Materials for Use in Radomes and Other Applications. General Plastics Manufacturing Company, 2015.
Google Scholar
Nair R. U. et al.: Temperature-dependent electromagnetic performance predictions of a hypersonic streamlined radome. Prog. electromagn. Res. 154, 2015, 65–78.
Google Scholar
Narendara S., Gopikrishna R.: Evaluation of structural integrity of tactical missile ceramic radomes under combined thermal and structural loads. Procedia Structural Integrity 14, 2019, 89–95.
DOI: https://doi.org/10.1016/j.prostr.2019.05.012
Google Scholar
NASA Outgassing Data for Selecting Spacecraft Materials, https://outgassing.nasa.gov (available: April 20, 2020).
Google Scholar
Öziş E. et al.: Metamaterials for Microwave Radomes and the Concept of a Metaradome: Review of the Literature. International Journal of Antennas and Propagation 2017, ID1356108 [http://doi.org/10.1155/2017/1356108].
DOI: https://doi.org/10.1155/2017/1356108
Google Scholar
Plonus M.: Electronics and Communications for Scientists and Engineers, 2020, [http://doi.org/10.1016/C2018-0-00442-9].
DOI: https://doi.org/10.1016/C2018-0-00442-9
Google Scholar
Raveendranath U. N. et al.: Temperature-Dependent Electromagnetic Perfor-mance Predictions of a Hypersonic Streamlined Radome. Progress In Electromagnetics Research 154, 2015, 65–78.
DOI: https://doi.org/10.2528/PIER15052602
Google Scholar
Romashin A. G. et al.: Radiotransparent fairings for aircraft. National Aerospace University, Kharkov 2003.
Google Scholar
Seckin S. et al.: Dielectric Properties of Low-Loss Polymers for mmW and THz Applications. International Journal of Infrared and Millimeter Waves 40, 2019, 557–573 [http://doi.org/10.1007/s10762-019-00584-2].
DOI: https://doi.org/10.1007/s10762-019-00584-2
Google Scholar
Tahseen H. U. et al.: Design of FSS-antenna-radome system for airborne and ground applications. LET Communications, 2021 [http://doi.org/10.1049/cmu2.12181].
Google Scholar
Tahseen H. U. et al.: Design of FSS-antenna-radome system for airborne and ground applications. IET Commun. 2021, 15, 1691–1699, [http://doi.org/10.1049/cmu2.12181].
DOI: https://doi.org/10.1049/cmu2.12181
Google Scholar
Xu W. et al.: Study on the electromagnetic performance of inhomogeneous radomes for airborne applications part 1: Characteristics of phase distortion and boresight error. IEEE Transactions on Antennas and Propagation 65(6), 2017, 3162–3174.
DOI: https://doi.org/10.1109/TAP.2017.2694489
Google Scholar
Ya M. et al.: Physics of heating microwave dielectrics of aircraft and their protection. SSGA, Novosibirsk 2008.
Google Scholar
Zhang H. X. et al.: Massively Parallel Electromagnetic–Thermal Cosimulation of Large Antenna Arrays. IEEE Antennas Wire. Propag. Lett. 19, 2020, 1551–1555.
DOI: https://doi.org/10.1109/LAWP.2020.3009164
Google Scholar
Authors
Valerii KozlovskiyNational Technical University of Ukraine "Kyiv Polytechnic Institute named after Igor Sikorsky", Institute of Special Communications and Information Protection Ukraine
https://orcid.org/0000-0003-0234-415X
Authors
Valeriy KozlovskiyNational Aviation University, Faculty of Cybersecurity, Computer and Software Engineering Ukraine
https://orcid.org/0000-0002-8301-5501
Authors
Oleksii NimychNational Aviation University, Faculty of Cybersecurity, Computer and Software Engineering Ukraine
https://orcid.org/0000-0003-1759-7088
Authors
Lyudmila KlobukovaNational Aviation University, Faculty of Cybersecurity, Computer and Software Engineering Ukraine
https://orcid.org/0000-0001-9799-4387
Authors
Natalia Yakymchukn.yakymchuk@lntu.edu.ua
Lutsk National Technical University, Faculty of Computer and Information Technologies Ukraine
https://orcid.org/0000-0002-8173-449X
Assistant of the Department of Electronics and Telecommunications, Faculty of Computer and Information Technologies, Lutsk National Technical University, Lutsk, Ukraine
Statistics
Abstract views: 207PDF downloads: 144
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Valentyn Zablotskyi, Yosyp Selepyna, Viktor Lyshuk, Natalia Yakymchuk, Anatolii Tkachuk, METHOD FOR EVALUATION QUALITY PARAMETERS OF TELECOMMUNICATIONS SERVICES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Evgeniy Pistun, Natalia Yakymchuk, DEVELOPMENT OF THE AUTOMATIC CONTROL SYSTEM OF PUMPING STATION FOR URBAN WATER SUPPLY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 4 No. 2 (2014)
- Valeriy Kozlovskiy, Natalia Yakymchuk, Yosyp Selepyna, Serhii Moroz, Anatolii Tkachuk, DEVELOPMENT OF A MODIFIED METHOD OF NETWORK TRAFFIC FORMING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)
- Natalia Yakymchuk, Yosyp Selepyna, Mykola Yevsiuk, Stanislav Prystupa, Serhii Moroz, MONITORING OF LINK-LEVEL CONGESTION IN TELECOMMUNICATION SYSTEMS USING INFORMATION CRITERIA , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 4 (2022)