MONITORING OF LINK-LEVEL CONGESTION IN TELECOMMUNICATION SYSTEMS USING INFORMATION CRITERIA

Natalia Yakymchuk

n.yakymchuk@lntu.edu.ua
Lutsk National Technical University (Kazakhstan)
http://orcid.org/0000-0002-8173-449X

Yosyp Selepyna


Lutsk National Technical University (Ukraine)
http://orcid.org/0000-0002-2421-1844

Mykola Yevsiuk


Lutsk National Technical University (Ukraine)
http://orcid.org/0000-0002-3768-8959

Stanislav Prystupa


Lutsk National Technical University (Ukraine)
http://orcid.org/0000-0003-3705-1541

Serhii Moroz


Lutsk National Technical University (Ukraine)
http://orcid.org/0000-0003-4677-5170

Abstract

The successful functioning of telecommunication networks largely depends on the effectiveness of algorithms for detection and protection against overloads. The article describes the main differences that arise when forecasting, monitoring and managing congestion at the node level and at the channel level. An algorithm for detecting congestion by estimating the entropy of time distributions of traffic parameters is proposed. The entropy measures of data sets for various types of model distribution, in particular for the Pareto distribution, which optimally describes the behavior of self-similar random processes, were calculated and analyzed. The advantages of this approach include scalability, sensitivity to changes in distributions of traffic characteristics and ease of implementation and accessible interpretation.


Keywords:

telecommunication systems, self-similarity factor of network traffic, congestion detection

Airehrour D., Gutierrez J. A., Ray S. K.: SecTrust-RPL: A secure trust-aware RPL routing protocol for Internet of Things. Future Generation Computer Systems 93, 2019, 860–876 [http://doi.org/10.1016/j.future.2018.03.021].
DOI: https://doi.org/10.1016/j.future.2018.03.021   Google Scholar

Alashhab A. A., Zahid M. S. M., Azim M. A., Daha M. Y., Isyaku B., Ali S.: A Survey of Low Rate DDoS Detection Techniques Based on Machine Learning in Software-Defined Networks. Symmetry 14, 2022, 1563 [http://doi.org/10.3390/sym14081563].
DOI: https://doi.org/10.3390/sym14081563   Google Scholar

Bakhovskyy P. et al.: Stages of the Virtual Technical Functions Concept Networks Development. Cagáˇnová et al. (eds.): Advances in Industrial Internet of Things, Engineering and Management. EAI/Springer Innovations in Communication and Computing, 2021, 119–135 [http://doi.org/10.1007/978-3-030-69705-1_7].
DOI: https://doi.org/10.1007/978-3-030-69705-1_7   Google Scholar

Bedin A., Chiariotti F., Kucera S., Zanella A.: Optimal Latency-Oriented Coding and Scheduling in Parallel Queuing Systems. IEEE Transactions on Communications 70(10), 2022, 6471–6488 [http://doi.org/10.1109/TCOMM.2022.3200105].
DOI: https://doi.org/10.1109/TCOMM.2022.3200105   Google Scholar

Chughtai O., Badruddin N., Rehan M., Khan A.: Congestion Detection and Alleviation in Multihop Wireless Sensor Networks. Wireless Communications and Mobile Computing 2017, 9243019 [http://doi.org/10.1155/2017/9243019].
DOI: https://doi.org/10.1155/2017/9243019   Google Scholar

Desai R. M., Patil B. P., Sharma D. P.: Learning based route management in mobile ad hoc networks. Indonesian Journal of Electrical Engineering and Computer Science 7(3), 2017, 718–723 [http://doi.org/10.11591/ijeecs.v7.i3.pp718-723].
DOI: https://doi.org/10.11591/ijeecs.v7.i3.pp718-723   Google Scholar

Desmoulins N., Fouque P.A., Onete C., Sanders O.: Pattern Matching on Encrypted Streams. ASIACRYPT 2018. Lecture Notes in Computer Science 11272, Springer, Cham. [http://doi.org/10.1007/978-3-030-03326-2_5].
DOI: https://doi.org/10.1007/978-3-030-03326-2_5   Google Scholar

Divitskyi A., Salnyk S., Hol V., Sydorkin P., Storchak A.: Development of a model of a subsystem for forecasting changes in data transmission routes in special purpose mobile radio networks. Eastern-European Journal of Enterprise Technologies 3(9), 2021, 116–125 [http://doi.org/10.15587/1729-4061.2021.235609].
DOI: https://doi.org/10.15587/1729-4061.2021.235609   Google Scholar

Dobkach L.: Analysis of methods for recognizing computer attacks. Legal informatics 1, 2020, 67–75 [http://doi.org/10/21681/1944-1404-2020-1-67-75].
  Google Scholar

Durairaj M., Hirudhaya Mary Asha J.: The Internet of Things (IoT) Routing Security – A Study. International Conference on Communication, Computing and Electronics Systems. Lecture Notes in Electrical Engineering 637. Springer, Singapore 2020 [http://doi.org/10.1007/978-981-15-2612-1_58].
DOI: https://doi.org/10.1007/978-981-15-2612-1_58   Google Scholar

Hasan N., Mishra A, Ray A. K.: Fuzzy logic based cross-layer design to improve Quality of Service in Mobile ad-hoc networks for Next-gen Cyber Physical System. Engineering Science and Technology, an International Journal 35, 2022, 101099 [http://doi.org/10.1016/j.jestch.2022.101099].
DOI: https://doi.org/10.1016/j.jestch.2022.101099   Google Scholar

Hui W., Zijian C., Bo H.: A Network Intrusion Detection System Based on Convolutional Neural Network. Journal of Intelligent & Fuzzy Systems 38(6), 2020, 7623–7637 [http://doi.org/10.3233/JIFS-179833].
DOI: https://doi.org/10.3233/JIFS-179833   Google Scholar

Mangelkar S., Dhage S., Nimkar A.: A comparative study on RPL attacks and security solutions. International Conference on Intelligent Computing and Control (I2C2), 2017, 1–6 [http://doi.org/10.1109/I2C2.2017.8321851].
DOI: https://doi.org/10.1109/I2C2.2017.8321851   Google Scholar

Moroz S., Tkachuk A., Khvyshchun M., Prystupa S., Yevsiuk M.: Methods for Ensuring Data Security in Mobile Standards. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 12(1), 2022, 4–9 [http://doi.org/10.35784/iapgos.2877].
DOI: https://doi.org/10.35784/iapgos.2877   Google Scholar

Myneni S., Chowdhary A., Huang D., Alshamrani A.: A distributed deep defense against DDoS attacks with edge computing. Computer Networks 209, 2022, 108874 [http://doi.org/10.1016/j.comnet.2022.108874].
DOI: https://doi.org/10.1016/j.comnet.2022.108874   Google Scholar

Priyadarshini R., Rabindra K.: A deep learning based intelligent framework to mitigate DDoS attack in fog environment. Journal of King Saud University – Computer and Information Sciences 34(3), 2022, 825–831 [http://doi.org/10.1016/j.jksuci.2019.04.010].
DOI: https://doi.org/10.1016/j.jksuci.2019.04.010   Google Scholar

Rafe V., Mohammady S., Cuevas E.: Using Bayesian optimization algorithm for model-based integration testing. Soft Comput 26, 2022, 3503–3525 [http://doi.org/10.1007/s00500-021-06476-9].
DOI: https://doi.org/10.1007/s00500-021-06476-9   Google Scholar

Showail A., Tahir R., Zaffar M. F., Noor M. H., Al-Khatib M.: An internet of secure and private things: A service-oriented architecture. Computers & Security 120, 2022, 102776 [http://doi.org/10.1016/j.cose.2022.102776].
DOI: https://doi.org/10.1016/j.cose.2022.102776   Google Scholar

Tkachuk A. et al.: Basic Stations Work Optimization in Cellular Communication Network. Advances in Industrial Internet of Things, Engineering and Management, EAI. Springer Innovations in Communication and Computing, 2021, 1–19 [http://doi.org/10.1007/978-3-030-69705-1_1].
DOI: https://doi.org/10.1007/978-3-030-69705-1_1   Google Scholar

Toroshanko Y., Selepyna Y., Yakymchuk N., Cherevyk V.: Control of traffic streams with the multi-rate token bucket, in International Conference on Advanced Information and Communications Technologies AICT 2019, 2019, 352–355 [http://doi.org/10.1109/AIACT.2019.8847860].
DOI: https://doi.org/10.1109/AIACT.2019.8847860   Google Scholar

Verma A., Ranga V.: Addressing Flooding Attacks in IPv6-based Low Power and Lossy Networks. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 2019, 552–557 [http://doi.org/10.1109/TENCON.2019.8929409].
DOI: https://doi.org/10.1109/TENCON.2019.8929409   Google Scholar

Yin C., Wang H., Yin X. et al.: Improved deep packet inspection in data stream detection. J Supercomput 75, 2019, 4295–4308 [http://doi.org/10.1007/s11227-018-2685-y].
DOI: https://doi.org/10.1007/s11227-018-2685-y   Google Scholar

Yungaicela-Naula N., Vargas-Rosales C., Pérez-Díaz J., Carrera D.: A flexible SDN-based framework for slow-rate DDoS attack mitigation by using deep reinforcement learning. Journal of Network and Computer Applications 205, 2022, 103444 [http://doi.org/10.1016/j.jnca.2022.103444].
DOI: https://doi.org/10.1016/j.jnca.2022.103444   Google Scholar

Zheng C., Li X., Liu Q., Sun Y., Fang B.: Hashing Incomplete and Unordered Network Streams. Advances in Digital Forensics XIV. DigitalForensics 2018. IFIP Advances in Information and Communication Technology 532. Springer, Cham. 2018 [https://doi.org/10.1007/978-3-319-99277-8_12].
DOI: https://doi.org/10.1007/978-3-319-99277-8_12   Google Scholar

Download


Published
2022-12-30

Cited by

Yakymchuk, N., Selepyna, Y., Yevsiuk, M., Prystupa, S., & Moroz, S. (2022). MONITORING OF LINK-LEVEL CONGESTION IN TELECOMMUNICATION SYSTEMS USING INFORMATION CRITERIA. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 12(4), 26–30. https://doi.org/10.35784/iapgos.3076

Authors

Natalia Yakymchuk 
n.yakymchuk@lntu.edu.ua
Lutsk National Technical University Kazakhstan
http://orcid.org/0000-0002-8173-449X

Authors

Yosyp Selepyna 

Lutsk National Technical University Ukraine
http://orcid.org/0000-0002-2421-1844

Authors

Mykola Yevsiuk 

Lutsk National Technical University Ukraine
http://orcid.org/0000-0002-3768-8959

Authors

Stanislav Prystupa 

Lutsk National Technical University Ukraine
http://orcid.org/0000-0003-3705-1541

Authors

Serhii Moroz 

Lutsk National Technical University Ukraine
http://orcid.org/0000-0003-4677-5170

Statistics

Abstract views: 136
PDF downloads: 114