MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS

Oleksandr Vasilevskyi

oleksandr.vasilevskyi@austin.utexas.edu
University of Texas at Austin, Austin, USA (United States)
http://orcid.org/0000-0002-8618-0377

Emanuel Popovici


University College Cork, Cork, Ireland (Ireland)
http://orcid.org/0000-0001-6813-5030

Volodymyr Sarana


University College Cork, Cork, Ireland (Ireland)
http://orcid.org/0000-0002-7778-3176

Abstract

Taking into account the peculiarities of using the MAX86150 evaluation system for measuring ECG and PPG signals, mathematical models were developed for indirect determination of systolic and diastolic pressure using fingers on the hand, which were tested in the MATLAB environment. Received ECG and PPG signals. Based on the proposed mathematical models, ECG and PPG signals were processed in the MATLAB package and the results of indirect measurement of blood pressure were presented.


Keywords:

systolic pressure, diastolic pressure, ECG and PPG signals, measurement, method for determining blood pressure

Asgharnezhad H., Shamsi A., Bakhshayeshi I., Alizadehsani R., Chamaani S., Alinejad-Rokny H.: Improving PPG Signal Classification with Machine Learning: The Power of a Second Opinion. In IEEE 24th International Conference on Digital Signal Processing (DSP), 2023, 1–5.
DOI: https://doi.org/10.1109/DSP58604.2023.10167869   Google Scholar

Chao P. C. P., Wu C. C., Nguyen D. H., Nguyen B. S., Huang P. C., Le V. H.: The machine learnings leading the cuffless PPG blood pressure sensors into the next stage. IEEE Sensors Journal 21(11), 2021, 12498–12510.
DOI: https://doi.org/10.1109/JSEN.2021.3073850   Google Scholar

Chiu Y. C., Arand P. W., Shroff S. G., Feldman T., Carroll J. D.: Determination of pulse wave velocities with computerized algorithms. American heart journal 121(5), 1991, 1460–1470.
DOI: https://doi.org/10.1016/0002-8703(91)90153-9   Google Scholar

Dutt D., Shruthi S.: Digital processing of ECG and PPG signals for study of arterial parameters for cardiovascular risk assessment. In IEEE International conference on communications and signal processing (ICCSP), 2015, 1506–1510.
DOI: https://doi.org/10.1109/ICCSP.2015.7322766   Google Scholar

Fortino G., Giampà V.: PPG-based methods for non invasive and continuous blood pressure measurement: an overview and development issues in body sensor networks. IEEE International Workshop on Medical Measurements and Applications, Ottawa, ON, Canada, 2010, 10–13.
DOI: https://doi.org/10.1109/MEMEA.2010.5480201   Google Scholar

Gómez-Quintana S., Schwarz C. E., Shelevytsky I., Shelevytska V., Semenova O., Factor A., Popovici E., Temko A.: A framework for AI-assisted detection of patent ductus arteriosus from neonatal phonocardiogram. In Healthcare 9(2), 2021, 169.
DOI: https://doi.org/10.3390/healthcare9020169   Google Scholar

Haque C. A., Kwon T.-H., Kim K.-D.: Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals. Sensors 22, 2022, 1175.
DOI: https://doi.org/10.3390/s22031175   Google Scholar

Kachuee M., Kiani M. M., Mohammadzade H., Shabany M.: Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Transactions on Biomedical Engineering 64(4), 2016, 859–869.
DOI: https://doi.org/10.1109/TBME.2016.2580904   Google Scholar

Kao Y. H., Chao P. C. P., Wey C. L.: Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing. IEEE J. Sel. Top. Quantum Electron 25, 2019, 18159167.
DOI: https://doi.org/10.1109/JSTQE.2018.2871604   Google Scholar

Liang Y., Chen Z., Ward R., Elgendi M.: Hypertension assessment via ECG and PPG signals: An evaluation using MIMIC database. Diagnostics 8(3), 2018, 65.
DOI: https://doi.org/10.3390/diagnostics8030065   Google Scholar

Man P. K., Cheung K. L., Sangsiri N., Shek W. J., Wong K. L., Chin J. W., Chan T. T., So R. H. Y.: Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring. In Healthcare 10(10), 2022, 2113.
DOI: https://doi.org/10.3390/healthcare10102113   Google Scholar

Morresi N., Casaccia S., Sorcinelli M., Arnesano M., Revel G.: Analysing performances of Heart Rate Variability measurement through a smartwatch. In 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2020, 1–6.
DOI: https://doi.org/10.1109/MeMeA49120.2020.9137211   Google Scholar

Mukkamala R., Hahn J. O., Inan O. T., Mestha L. K., Kim C. S., Töreyin H., Kyal S.: Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. In IEEE Transactions on Biomedical Engineering 62(8), 2015, 1879–1901.
DOI: https://doi.org/10.1109/TBME.2015.2441951   Google Scholar

Payne R. A., Symeonides C. N., Webb D. J., Maxwell S. R.: Pulse transit time measured from the ECG: An unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100, 2006, 136–141.
DOI: https://doi.org/10.1152/japplphysiol.00657.2005   Google Scholar

Pour Ebrahim M., Heydari F., Wu T., Walker K., Joe K., Redoute J. M., Yuce M. R.: Blood pressure estimation using on-body continuous wave radar and photoplethysmogram in various posture and exercise conditions. Scientific Reports 9(1), 2019, 1–13.
DOI: https://doi.org/10.1038/s41598-019-52710-8   Google Scholar

Rundo F., Petralia S., Fallica G., Conoci S.: A nonlinear pattern recognition pipeline for PPG/ECG medical assessments. In Convegno Nazionale Sensori, 2018, 473–480.
DOI: https://doi.org/10.1007/978-3-030-04324-7_57   Google Scholar

Samimi H., Dajani H. R.: Cuffless Blood Pressure Estimation Using Calibrated Cardiovascular Dynamics in the Photoplethysmogram. Bioengineering 9(9), 2022, 446.
DOI: https://doi.org/10.3390/bioengineering9090446   Google Scholar

Semenov A., Osadchuk O., Semenova O., Bisikalo O., Vasilevskyi O., Voznyak O.: Signal Statistic and Informational Parameters of Deterministic Chaos Transistor Oscillators for Infocommunication Systems. 2018 International Scientific-Practical Conference Problems of Infocommunications Science and Technology, 2019, 8632046, 730–734.
DOI: https://doi.org/10.1109/INFOCOMMST.2018.8632046   Google Scholar

Shabaan M., Arshid K., Yaqub M., Jinchao F., Zia M., Bojja G., Iftikhar M., Ghani U., Ambati L., Munir R.: Survey: smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis. BMC medical informatics and decision making, 2020, 1–6.
DOI: https://doi.org/10.1186/s12911-020-01199-7   Google Scholar

Sharma M., Barbosa K., Ho V., Griggs D., Ghirmai T., Krishnan S. K., Hsiai T. K., Chiao J. C., Cao H.: Cuff-less and continuous blood pressure monitoring: a methodological review. Technologies 5(2), 2017, 21.
DOI: https://doi.org/10.3390/technologies5020021   Google Scholar

Trishch R., Nechuiviter O., Dyadyura K., Vasilevskyi O., Tsykhanovska I., Yakovlev M.: Qualimetric method of assessing risks of low quality products. MM Science Journal 2021(4), 2021, 4769–4774.
DOI: https://doi.org/10.17973/MMSJ.2021_10_2021030   Google Scholar

Tseng T. J., Tseng C. H.: Cuffless blood pressure measurement using a microwave near-field self-injection-locked wrist pulse sensor. IEEE Trans. Microw. Theory Tech 68, 2020, 4865–4874.
DOI: https://doi.org/10.1109/TMTT.2020.3011446   Google Scholar

Vasilevskyi O. M., Yakovlev M. Y., Kulakov P. I.: Spectral method to evaluate the uncertainty of dynamic measurements. Technical Electrodynamics 4, 2017, 72–78.
DOI: https://doi.org/10.15407/techned2017.04.072   Google Scholar

Vasilevskyi O. M.: A frequency method for dynamic uncertainty evaluation of measurement during modes of dynamic operation. International Journal of Metrology and Quality Engineering 6(2), 2015, 202.
DOI: https://doi.org/10.1051/ijmqe/2015008   Google Scholar

Vasilevskyi O. M.: Assessing the level of confidence for expressing extended uncertainty: a model based on control errors in the measurement of ion activity. Acta IMEKO 10(2), 2021, 199–203.
DOI: https://doi.org/10.21014/acta_imeko.v10i2.810   Google Scholar

Vasilevskyi O. M.: Calibration method to assess the accuracy of measurement devices using the theory of uncertainty. International Journal of Metrology and Quality Engineering 5(4), 2014, 403.
DOI: https://doi.org/10.1051/ijmqe/2014017   Google Scholar

Vasilevskyi O. M.: Metrological characteristics of the torque measurement of electric motors. International Journal of Metrology and Quality Engineering 8, 2017, 7.
DOI: https://doi.org/10.1051/ijmqe/2017005   Google Scholar

Vasilevskyi O., Koval M., Kravets S.: Indicators of reproducibility and suitability for assessing the quality of production services. Acta IMEKO 10(4), 2021, 54–61.
DOI: https://doi.org/10.21014/acta_imeko.v10i4.814   Google Scholar

Vasilevskyi O., Kulakov P., Kompanets D., Lysenko O. M., Prysyazhnyuk V., Wójcik W., Baitussupov D.: A new approach to assessing the dynamic uncertainty of measuring devices. Proc. SPIE 10808, 2018, 728–735.
  Google Scholar

Vasilevskyi O., Voznyak O., Didych V., Sevastianov V., Ruchka O., Rykun V.: Methods for Constructing High-precision Potentiometric Measuring Instruments of Ion Activity. In 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), 2022, 247–252.
DOI: https://doi.org/10.1109/ELNANO54667.2022.9927128   Google Scholar

Wang H. S. J., Yeh M. H., Chao P. C. P., Tu T. Y., Kao Y. H., Pandey R.: A fast chip implementing a real-time noise resistant algorithm for estimating blood pressure using a non-invasive, cuffless PPG sensor. Microsyst. Technol 26, 2020, 3501–3516.
DOI: https://doi.org/10.1007/s00542-020-04946-y   Google Scholar

Zhang Q., Zeng X., Hu W., Zhou D.: A Machine Learning-Empowered System for Long-Term Motion-Tolerant Wearable Monitoring of Blood Pressure and Heart Rate With Ear-ECG/PPG. In IEEE Access 5, 2017, 10547–10561.
DOI: https://doi.org/10.1109/ACCESS.2017.2707472   Google Scholar

American Heart Association. [https://www.heart.org/en/] (access 08/07/2023).
DOI: https://doi.org/10.55041/IJSREM25025   Google Scholar

AnalogDevices Homepage [https://www.analog.com/media/en/technical-documentation/data-sheets/MAX86150EVSYS.pdf] (access 2023/08/07).
  Google Scholar

THINKLABS Homepage [https://www.thinklabs.com/] (access 2023/08/07).
  Google Scholar

Download


Published
2023-09-30

Cited by

Vasilevskyi, O., Popovici, E., & Sarana, V. (2023). MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS . Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(3), 5–10. https://doi.org/10.35784/iapgos.5326

Authors

Oleksandr Vasilevskyi 
oleksandr.vasilevskyi@austin.utexas.edu
University of Texas at Austin, Austin, USA United States
http://orcid.org/0000-0002-8618-0377

Authors

Emanuel Popovici 

University College Cork, Cork, Ireland Ireland
http://orcid.org/0000-0001-6813-5030

Authors

Volodymyr Sarana 

University College Cork, Cork, Ireland Ireland
http://orcid.org/0000-0002-7778-3176

Statistics

Abstract views: 275
PDF downloads: 278