MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS
Oleksandr Vasilevskyi
oleksandr.vasilevskyi@austin.utexas.eduUniversity of Texas at Austin, Austin, USA (United States)
http://orcid.org/0000-0002-8618-0377
Emanuel Popovici
University College Cork, Cork, Ireland (Ireland)
http://orcid.org/0000-0001-6813-5030
Volodymyr Sarana
University College Cork, Cork, Ireland (Ireland)
http://orcid.org/0000-0002-7778-3176
Abstract
Taking into account the peculiarities of using the MAX86150 evaluation system for measuring ECG and PPG signals, mathematical models were developed for indirect determination of systolic and diastolic pressure using fingers on the hand, which were tested in the MATLAB environment. Received ECG and PPG signals. Based on the proposed mathematical models, ECG and PPG signals were processed in the MATLAB package and the results of indirect measurement of blood pressure were presented.
Keywords:
systolic pressure, diastolic pressure, ECG and PPG signals, measurement, method for determining blood pressureReferences
Asgharnezhad H., Shamsi A., Bakhshayeshi I., Alizadehsani R., Chamaani S., Alinejad-Rokny H.: Improving PPG Signal Classification with Machine Learning: The Power of a Second Opinion. In IEEE 24th International Conference on Digital Signal Processing (DSP), 2023, 1–5.
DOI: https://doi.org/10.1109/DSP58604.2023.10167869
Google Scholar
Chao P. C. P., Wu C. C., Nguyen D. H., Nguyen B. S., Huang P. C., Le V. H.: The machine learnings leading the cuffless PPG blood pressure sensors into the next stage. IEEE Sensors Journal 21(11), 2021, 12498–12510.
DOI: https://doi.org/10.1109/JSEN.2021.3073850
Google Scholar
Chiu Y. C., Arand P. W., Shroff S. G., Feldman T., Carroll J. D.: Determination of pulse wave velocities with computerized algorithms. American heart journal 121(5), 1991, 1460–1470.
DOI: https://doi.org/10.1016/0002-8703(91)90153-9
Google Scholar
Dutt D., Shruthi S.: Digital processing of ECG and PPG signals for study of arterial parameters for cardiovascular risk assessment. In IEEE International conference on communications and signal processing (ICCSP), 2015, 1506–1510.
DOI: https://doi.org/10.1109/ICCSP.2015.7322766
Google Scholar
Fortino G., Giampà V.: PPG-based methods for non invasive and continuous blood pressure measurement: an overview and development issues in body sensor networks. IEEE International Workshop on Medical Measurements and Applications, Ottawa, ON, Canada, 2010, 10–13.
DOI: https://doi.org/10.1109/MEMEA.2010.5480201
Google Scholar
Gómez-Quintana S., Schwarz C. E., Shelevytsky I., Shelevytska V., Semenova O., Factor A., Popovici E., Temko A.: A framework for AI-assisted detection of patent ductus arteriosus from neonatal phonocardiogram. In Healthcare 9(2), 2021, 169.
DOI: https://doi.org/10.3390/healthcare9020169
Google Scholar
Haque C. A., Kwon T.-H., Kim K.-D.: Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals. Sensors 22, 2022, 1175.
DOI: https://doi.org/10.3390/s22031175
Google Scholar
Kachuee M., Kiani M. M., Mohammadzade H., Shabany M.: Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Transactions on Biomedical Engineering 64(4), 2016, 859–869.
DOI: https://doi.org/10.1109/TBME.2016.2580904
Google Scholar
Kao Y. H., Chao P. C. P., Wey C. L.: Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing. IEEE J. Sel. Top. Quantum Electron 25, 2019, 18159167.
DOI: https://doi.org/10.1109/JSTQE.2018.2871604
Google Scholar
Liang Y., Chen Z., Ward R., Elgendi M.: Hypertension assessment via ECG and PPG signals: An evaluation using MIMIC database. Diagnostics 8(3), 2018, 65.
DOI: https://doi.org/10.3390/diagnostics8030065
Google Scholar
Man P. K., Cheung K. L., Sangsiri N., Shek W. J., Wong K. L., Chin J. W., Chan T. T., So R. H. Y.: Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring. In Healthcare 10(10), 2022, 2113.
DOI: https://doi.org/10.3390/healthcare10102113
Google Scholar
Morresi N., Casaccia S., Sorcinelli M., Arnesano M., Revel G.: Analysing performances of Heart Rate Variability measurement through a smartwatch. In 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2020, 1–6.
DOI: https://doi.org/10.1109/MeMeA49120.2020.9137211
Google Scholar
Mukkamala R., Hahn J. O., Inan O. T., Mestha L. K., Kim C. S., Töreyin H., Kyal S.: Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. In IEEE Transactions on Biomedical Engineering 62(8), 2015, 1879–1901.
DOI: https://doi.org/10.1109/TBME.2015.2441951
Google Scholar
Payne R. A., Symeonides C. N., Webb D. J., Maxwell S. R.: Pulse transit time measured from the ECG: An unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100, 2006, 136–141.
DOI: https://doi.org/10.1152/japplphysiol.00657.2005
Google Scholar
Pour Ebrahim M., Heydari F., Wu T., Walker K., Joe K., Redoute J. M., Yuce M. R.: Blood pressure estimation using on-body continuous wave radar and photoplethysmogram in various posture and exercise conditions. Scientific Reports 9(1), 2019, 1–13.
DOI: https://doi.org/10.1038/s41598-019-52710-8
Google Scholar
Rundo F., Petralia S., Fallica G., Conoci S.: A nonlinear pattern recognition pipeline for PPG/ECG medical assessments. In Convegno Nazionale Sensori, 2018, 473–480.
DOI: https://doi.org/10.1007/978-3-030-04324-7_57
Google Scholar
Samimi H., Dajani H. R.: Cuffless Blood Pressure Estimation Using Calibrated Cardiovascular Dynamics in the Photoplethysmogram. Bioengineering 9(9), 2022, 446.
DOI: https://doi.org/10.3390/bioengineering9090446
Google Scholar
Semenov A., Osadchuk O., Semenova O., Bisikalo O., Vasilevskyi O., Voznyak O.: Signal Statistic and Informational Parameters of Deterministic Chaos Transistor Oscillators for Infocommunication Systems. 2018 International Scientific-Practical Conference Problems of Infocommunications Science and Technology, 2019, 8632046, 730–734.
DOI: https://doi.org/10.1109/INFOCOMMST.2018.8632046
Google Scholar
Shabaan M., Arshid K., Yaqub M., Jinchao F., Zia M., Bojja G., Iftikhar M., Ghani U., Ambati L., Munir R.: Survey: smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis. BMC medical informatics and decision making, 2020, 1–6.
DOI: https://doi.org/10.1186/s12911-020-01199-7
Google Scholar
Sharma M., Barbosa K., Ho V., Griggs D., Ghirmai T., Krishnan S. K., Hsiai T. K., Chiao J. C., Cao H.: Cuff-less and continuous blood pressure monitoring: a methodological review. Technologies 5(2), 2017, 21.
DOI: https://doi.org/10.3390/technologies5020021
Google Scholar
Trishch R., Nechuiviter O., Dyadyura K., Vasilevskyi O., Tsykhanovska I., Yakovlev M.: Qualimetric method of assessing risks of low quality products. MM Science Journal 2021(4), 2021, 4769–4774.
DOI: https://doi.org/10.17973/MMSJ.2021_10_2021030
Google Scholar
Tseng T. J., Tseng C. H.: Cuffless blood pressure measurement using a microwave near-field self-injection-locked wrist pulse sensor. IEEE Trans. Microw. Theory Tech 68, 2020, 4865–4874.
DOI: https://doi.org/10.1109/TMTT.2020.3011446
Google Scholar
Vasilevskyi O. M., Yakovlev M. Y., Kulakov P. I.: Spectral method to evaluate the uncertainty of dynamic measurements. Technical Electrodynamics 4, 2017, 72–78.
DOI: https://doi.org/10.15407/techned2017.04.072
Google Scholar
Vasilevskyi O. M.: A frequency method for dynamic uncertainty evaluation of measurement during modes of dynamic operation. International Journal of Metrology and Quality Engineering 6(2), 2015, 202.
DOI: https://doi.org/10.1051/ijmqe/2015008
Google Scholar
Vasilevskyi O. M.: Assessing the level of confidence for expressing extended uncertainty: a model based on control errors in the measurement of ion activity. Acta IMEKO 10(2), 2021, 199–203.
DOI: https://doi.org/10.21014/acta_imeko.v10i2.810
Google Scholar
Vasilevskyi O. M.: Calibration method to assess the accuracy of measurement devices using the theory of uncertainty. International Journal of Metrology and Quality Engineering 5(4), 2014, 403.
DOI: https://doi.org/10.1051/ijmqe/2014017
Google Scholar
Vasilevskyi O. M.: Metrological characteristics of the torque measurement of electric motors. International Journal of Metrology and Quality Engineering 8, 2017, 7.
DOI: https://doi.org/10.1051/ijmqe/2017005
Google Scholar
Vasilevskyi O., Koval M., Kravets S.: Indicators of reproducibility and suitability for assessing the quality of production services. Acta IMEKO 10(4), 2021, 54–61.
DOI: https://doi.org/10.21014/acta_imeko.v10i4.814
Google Scholar
Vasilevskyi O., Kulakov P., Kompanets D., Lysenko O. M., Prysyazhnyuk V., Wójcik W., Baitussupov D.: A new approach to assessing the dynamic uncertainty of measuring devices. Proc. SPIE 10808, 2018, 728–735.
Google Scholar
Vasilevskyi O., Voznyak O., Didych V., Sevastianov V., Ruchka O., Rykun V.: Methods for Constructing High-precision Potentiometric Measuring Instruments of Ion Activity. In 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), 2022, 247–252.
DOI: https://doi.org/10.1109/ELNANO54667.2022.9927128
Google Scholar
Wang H. S. J., Yeh M. H., Chao P. C. P., Tu T. Y., Kao Y. H., Pandey R.: A fast chip implementing a real-time noise resistant algorithm for estimating blood pressure using a non-invasive, cuffless PPG sensor. Microsyst. Technol 26, 2020, 3501–3516.
DOI: https://doi.org/10.1007/s00542-020-04946-y
Google Scholar
Zhang Q., Zeng X., Hu W., Zhou D.: A Machine Learning-Empowered System for Long-Term Motion-Tolerant Wearable Monitoring of Blood Pressure and Heart Rate With Ear-ECG/PPG. In IEEE Access 5, 2017, 10547–10561.
DOI: https://doi.org/10.1109/ACCESS.2017.2707472
Google Scholar
American Heart Association. [https://www.heart.org/en/] (access 08/07/2023).
DOI: https://doi.org/10.55041/IJSREM25025
Google Scholar
AnalogDevices Homepage [https://www.analog.com/media/en/technical-documentation/data-sheets/MAX86150EVSYS.pdf] (access 2023/08/07).
Google Scholar
THINKLABS Homepage [https://www.thinklabs.com/] (access 2023/08/07).
Google Scholar
Authors
Oleksandr Vasilevskyioleksandr.vasilevskyi@austin.utexas.edu
University of Texas at Austin, Austin, USA United States
http://orcid.org/0000-0002-8618-0377
Authors
Emanuel PopoviciUniversity College Cork, Cork, Ireland Ireland
http://orcid.org/0000-0001-6813-5030
Authors
Volodymyr SaranaUniversity College Cork, Cork, Ireland Ireland
http://orcid.org/0000-0002-7778-3176
Statistics
Abstract views: 275PDF downloads: 278
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Kostyantyn Ovchynnykov, Oleksandr Vasilevskyi, Volodymyr Sevastianov, Yurii Polievoda, Aliya Kalizhanova, Bakhyt Yeraliyeva, DETERMINATION OF THE OPTIMAL FREQUENCY OF THE PRIMARY MEASURING TRANSDUCER OF THE THICKNESS OF DIELECTRIC COATINGS OF METAL SURFACES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Oleksandr Vasilevskyi, Ihor Dudatiev, Kostyantyn Ovchynnykov, TOOL CONTROL THE CONCENTRATION OF CARBON DIOXIDE IN THE FLUE GAS BOILERS BASED ON THE OPTICAL ABSORPTION METHOD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 3 (2019)
- Oleksandr Vasilevskyi, Michael Cullinan, Jared Allison, THEORETICAL APPROACH FOR DETERMINING AN EMISSIVITY OF SOLID MATERIALS AND ITS COMPARISON WITH EXPERIMENTAL STUDIES ON THE EXAMPLE OF 316L POWDER STEEL , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 3 (2024)