MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS
Article Sidebar
Open full text
Issue Vol. 13 No. 3 (2023)
-
MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS
Oleksandr Vasilevskyi, Emanuel Popovici, Volodymyr Sarana5-10
-
SEGMENTATION OF CANCER MASSES ON BREAST ULTRASOUND IMAGES USING MODIFIED U-NET
Ihssane Khallassi, My Hachem El Yousfi Alaoui, Abdelilah Jilbab11-15
-
CLASSIFICATION OF PARKINSON’S DISEASE AND OTHER NEUROLOGICAL DISORDERS USING VOICE FEATURES EXTRACTION AND REDUCTION TECHNIQUES
Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch16-22
-
DEVELOPMENT OF THE POWER SUPPLY AND CONTROL SYSTEM FOR THE HEMODIALYSIS MACHINE
Volodymyr Yaskiv, Anna Yaskiv23-28
-
VALIDATION OF A THREE-DIMENSIONAL HEAD PHANTOM FOR IMAGING DATA
Jolanta Podolszańska29-32
-
OVERLOAD AND TRAFFIC MANAGEMENT OF MESSAGE SOURCES WITH DIFFERENT PRIORITY OF SERVICE
Valerii Kozlovskyi, Valerii Kozlovskyi, Andrii Toroshanko, Oleksandr Toroshanko, Natalia Yakumchuk33-36
-
RESEARCH ON CALCULATION OPTIMIZATION METHODS USED IN COMPUTER GAMES DEVELOPMENT
Natali Fedotova, Maksim Protsenko, Iryna Baranova, Svitlana Vashchenko, Yaroslava Dehtiarenko37-42
-
ANALYSIS OF THE QUALITY OF PRINTED PLA SAMPLES USING VARIOUS 3D PRINTERS AND PRINT PREPARATION PROGRAMS
Karolina Tomczyk, Albert Raczkiewicz, Magdalena Paśnikowska-Łukaszuk43-46
-
SEGMENTATION OF MULTIGRADATION IMAGES BASED ON SPATIAL CONNECTIVITY FEATURES
Leonid Timchenko, Natalia Kokriatskaya, Volodymyr Tverdomed, Oleksandr Stetsenko, Valentina Kaplun, Oleg K. Kolesnytskyj, Oleksandr Reshetnik; Saule Smailova; Ulzhalgas Zhunissova47-50
-
IMPLEMENTATION OF COMPUTER PROCESSING OF RELAXATION PROCESSES INVESTIGATION DATA USING EXTENDED EXPONENTIAL FUNCTION
Andrey Lozovskyi, Alexander Lyashkov, Igor Gomilko, Alexander Tonkoshkur51-55
-
URBAN TRAFFIC CRASH ANALYSIS USING DEEP LEARNING TECHNIQUES
Mummaneni Sobhana, Nihitha Vemulapalli, Gnana Siva Sai Venkatesh Mendu, Naga Deepika Ginjupalli, Pragathi Dodda, Rayanoothala Bala Venkata Subramanyam56-63
-
UNBALANCED MULTICLASS CLASSIFICATION WITH ADAPTIVE SYNTHETIC MULTINOMIAL NAIVE BAYES APPROACH
Fatkhurokhman Fauzi, . Ismatullah, Indah Manfaati Nur64-70
-
COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS
Volodymyr Lotysh, Larysa Gumeniuk, Pavlo Humeniuk71-74
-
A STANDALONE DC MICROGRID ENERGY MANAGEMENT STRATEGY USING THE BATTERY STATE OF CHARGE
Elvin Yusubov, Lala Bekirova75-78
-
MACROMODELING OF LOCAL POWER SUPPLY SYSTEM BALANCE FORECASTING USING FRACTAL PROPERTIES OF LOAD AND GENERATION SCHEDULES
Daniyar Jarykbassov, Petr Lezhniuk, Iryna Hunko, Vladyslav Lysyi, Lyubov Dobrovolska79-82
-
PV PANEL COOLING USING STACK EFFECT
Kudith Nageswara Rao, Ganesamoorthy Rajkuma83-85
-
A NEW AUTOMATIC INTELLIGENCE-BASED SOLAR LOAD CONTROL SYSTEM
Kudith Nageswara Rao, Ganesamoorthy Rajkuma86-89
-
OPTIMIZATION OF PARTS CUTTING PROCESS PARAMETERS WORKING IN CONDITIONS OF CYCLIC LOADS
Kateryna Barandych, Sergii Vysloukh, Grygoriy Tymchyk, Oleksandr Murashchenko, Saule Smailova, Saule Kumargazhanova90-93
-
RESEARCH THE EFFECT OF THE FRACTIONAL NUMBER SLOTS OF POLE ON WIND TURBINE GENERATION USING THE ENHANCED SPOTTED HYENA OPTIMIZATION ALGORITHM
Ibrahim M. Aladwan, Hasan Abdelrazzaq AL Dabbas, Ayman. M. Maqableh, Sayel M. Fayyad, Oleksandr Miroshnyk, Taras Shchur, Vadym Ptashnyk94-100
-
NEW SURFACE REFLECTANCE MODEL WITH THE COMBINATION OF TWO CUBIC FUNCTIONS USAGE
Oleksandr Romanyuk, Yevhen Zavalniuk, Sergii Pavlov, Roman Chekhmestruk, Zlata Bondarenko, Tetiana Koval, Aliya Kalizhanova, Aigul Iskakova101-106
-
THE CONCEPT OF ELECTRONIC CONTROL UNIT FOR COMBUSTION ENGINE IN HYBRID TANDEM
Tomasz Zyska, Marcin Powązka, Bartłomiej Forysiuk107-110
-
TESLA SWITCH OF 4 BATTERIES BASED ON THE ARDUINO UNO BOARD
Mykola Polishchuk, Serhii Grinyuk, Serhii Kostiuchko, Anatolii Tkachuk, Pavlo Savaryn111-116
-
REMOTE SOTA ALGORITHM FOR NB-IOT WIRELESS SENSORS – IMPLEMENTATION AND RESULTS
Piotr Szydłowski, Karol Zaręba117-120
-
DEVELOPMENT OF A SOFTWARE SYSTEM FOR PREDICTING EMPLOYEE RATINGS
Gulnar Balakayeva, Dauren Darkenbayev, Mukhit Zhanuzakov121-124
-
ENGINEERING AND TECHNICAL ASSESSMENT OF THE COMPETITIVENESS OF UKRAINIAN MECHANICAL ENGINEERING ENTERPRISES BASED ON THE APPLICATION OF REGRESSION MODELS
Anna Vitiuk, Leonid Polishchuk, Nataliia B. Savina, Oksana O. Adler, Gulzhan Kashaganova, Saule Kumargazhanova125-128
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
oleksandr.vasilevskyi@austin.utexas.edu
Abstract
Taking into account the peculiarities of using the MAX86150 evaluation system for measuring ECG and PPG signals, mathematical models were developed for indirect determination of systolic and diastolic pressure using fingers on the hand, which were tested in the MATLAB environment. Received ECG and PPG signals. Based on the proposed mathematical models, ECG and PPG signals were processed in the MATLAB package and the results of indirect measurement of blood pressure were presented.
Keywords:
References
Asgharnezhad H., Shamsi A., Bakhshayeshi I., Alizadehsani R., Chamaani S., Alinejad-Rokny H.: Improving PPG Signal Classification with Machine Learning: The Power of a Second Opinion. In IEEE 24th International Conference on Digital Signal Processing (DSP), 2023, 1–5. DOI: https://doi.org/10.1109/DSP58604.2023.10167869
Chao P. C. P., Wu C. C., Nguyen D. H., Nguyen B. S., Huang P. C., Le V. H.: The machine learnings leading the cuffless PPG blood pressure sensors into the next stage. IEEE Sensors Journal 21(11), 2021, 12498–12510. DOI: https://doi.org/10.1109/JSEN.2021.3073850
Chiu Y. C., Arand P. W., Shroff S. G., Feldman T., Carroll J. D.: Determination of pulse wave velocities with computerized algorithms. American heart journal 121(5), 1991, 1460–1470. DOI: https://doi.org/10.1016/0002-8703(91)90153-9
Dutt D., Shruthi S.: Digital processing of ECG and PPG signals for study of arterial parameters for cardiovascular risk assessment. In IEEE International conference on communications and signal processing (ICCSP), 2015, 1506–1510. DOI: https://doi.org/10.1109/ICCSP.2015.7322766
Fortino G., Giampà V.: PPG-based methods for non invasive and continuous blood pressure measurement: an overview and development issues in body sensor networks. IEEE International Workshop on Medical Measurements and Applications, Ottawa, ON, Canada, 2010, 10–13. DOI: https://doi.org/10.1109/MEMEA.2010.5480201
Gómez-Quintana S., Schwarz C. E., Shelevytsky I., Shelevytska V., Semenova O., Factor A., Popovici E., Temko A.: A framework for AI-assisted detection of patent ductus arteriosus from neonatal phonocardiogram. In Healthcare 9(2), 2021, 169. DOI: https://doi.org/10.3390/healthcare9020169
Haque C. A., Kwon T.-H., Kim K.-D.: Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals. Sensors 22, 2022, 1175. DOI: https://doi.org/10.3390/s22031175
Kachuee M., Kiani M. M., Mohammadzade H., Shabany M.: Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Transactions on Biomedical Engineering 64(4), 2016, 859–869. DOI: https://doi.org/10.1109/TBME.2016.2580904
Kao Y. H., Chao P. C. P., Wey C. L.: Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing. IEEE J. Sel. Top. Quantum Electron 25, 2019, 18159167. DOI: https://doi.org/10.1109/JSTQE.2018.2871604
Liang Y., Chen Z., Ward R., Elgendi M.: Hypertension assessment via ECG and PPG signals: An evaluation using MIMIC database. Diagnostics 8(3), 2018, 65. DOI: https://doi.org/10.3390/diagnostics8030065
Man P. K., Cheung K. L., Sangsiri N., Shek W. J., Wong K. L., Chin J. W., Chan T. T., So R. H. Y.: Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring. In Healthcare 10(10), 2022, 2113. DOI: https://doi.org/10.3390/healthcare10102113
Morresi N., Casaccia S., Sorcinelli M., Arnesano M., Revel G.: Analysing performances of Heart Rate Variability measurement through a smartwatch. In 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2020, 1–6. DOI: https://doi.org/10.1109/MeMeA49120.2020.9137211
Mukkamala R., Hahn J. O., Inan O. T., Mestha L. K., Kim C. S., Töreyin H., Kyal S.: Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. In IEEE Transactions on Biomedical Engineering 62(8), 2015, 1879–1901. DOI: https://doi.org/10.1109/TBME.2015.2441951
Payne R. A., Symeonides C. N., Webb D. J., Maxwell S. R.: Pulse transit time measured from the ECG: An unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100, 2006, 136–141. DOI: https://doi.org/10.1152/japplphysiol.00657.2005
Pour Ebrahim M., Heydari F., Wu T., Walker K., Joe K., Redoute J. M., Yuce M. R.: Blood pressure estimation using on-body continuous wave radar and photoplethysmogram in various posture and exercise conditions. Scientific Reports 9(1), 2019, 1–13. DOI: https://doi.org/10.1038/s41598-019-52710-8
Rundo F., Petralia S., Fallica G., Conoci S.: A nonlinear pattern recognition pipeline for PPG/ECG medical assessments. In Convegno Nazionale Sensori, 2018, 473–480. DOI: https://doi.org/10.1007/978-3-030-04324-7_57
Samimi H., Dajani H. R.: Cuffless Blood Pressure Estimation Using Calibrated Cardiovascular Dynamics in the Photoplethysmogram. Bioengineering 9(9), 2022, 446. DOI: https://doi.org/10.3390/bioengineering9090446
Semenov A., Osadchuk O., Semenova O., Bisikalo O., Vasilevskyi O., Voznyak O.: Signal Statistic and Informational Parameters of Deterministic Chaos Transistor Oscillators for Infocommunication Systems. 2018 International Scientific-Practical Conference Problems of Infocommunications Science and Technology, 2019, 8632046, 730–734. DOI: https://doi.org/10.1109/INFOCOMMST.2018.8632046
Shabaan M., Arshid K., Yaqub M., Jinchao F., Zia M., Bojja G., Iftikhar M., Ghani U., Ambati L., Munir R.: Survey: smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis. BMC medical informatics and decision making, 2020, 1–6. DOI: https://doi.org/10.1186/s12911-020-01199-7
Sharma M., Barbosa K., Ho V., Griggs D., Ghirmai T., Krishnan S. K., Hsiai T. K., Chiao J. C., Cao H.: Cuff-less and continuous blood pressure monitoring: a methodological review. Technologies 5(2), 2017, 21. DOI: https://doi.org/10.3390/technologies5020021
Trishch R., Nechuiviter O., Dyadyura K., Vasilevskyi O., Tsykhanovska I., Yakovlev M.: Qualimetric method of assessing risks of low quality products. MM Science Journal 2021(4), 2021, 4769–4774. DOI: https://doi.org/10.17973/MMSJ.2021_10_2021030
Tseng T. J., Tseng C. H.: Cuffless blood pressure measurement using a microwave near-field self-injection-locked wrist pulse sensor. IEEE Trans. Microw. Theory Tech 68, 2020, 4865–4874. DOI: https://doi.org/10.1109/TMTT.2020.3011446
Vasilevskyi O. M., Yakovlev M. Y., Kulakov P. I.: Spectral method to evaluate the uncertainty of dynamic measurements. Technical Electrodynamics 4, 2017, 72–78. DOI: https://doi.org/10.15407/techned2017.04.072
Vasilevskyi O. M.: A frequency method for dynamic uncertainty evaluation of measurement during modes of dynamic operation. International Journal of Metrology and Quality Engineering 6(2), 2015, 202. DOI: https://doi.org/10.1051/ijmqe/2015008
Vasilevskyi O. M.: Assessing the level of confidence for expressing extended uncertainty: a model based on control errors in the measurement of ion activity. Acta IMEKO 10(2), 2021, 199–203. DOI: https://doi.org/10.21014/acta_imeko.v10i2.810
Vasilevskyi O. M.: Calibration method to assess the accuracy of measurement devices using the theory of uncertainty. International Journal of Metrology and Quality Engineering 5(4), 2014, 403. DOI: https://doi.org/10.1051/ijmqe/2014017
Vasilevskyi O. M.: Metrological characteristics of the torque measurement of electric motors. International Journal of Metrology and Quality Engineering 8, 2017, 7. DOI: https://doi.org/10.1051/ijmqe/2017005
Vasilevskyi O., Koval M., Kravets S.: Indicators of reproducibility and suitability for assessing the quality of production services. Acta IMEKO 10(4), 2021, 54–61. DOI: https://doi.org/10.21014/acta_imeko.v10i4.814
Vasilevskyi O., Kulakov P., Kompanets D., Lysenko O. M., Prysyazhnyuk V., Wójcik W., Baitussupov D.: A new approach to assessing the dynamic uncertainty of measuring devices. Proc. SPIE 10808, 2018, 728–735.
Vasilevskyi O., Voznyak O., Didych V., Sevastianov V., Ruchka O., Rykun V.: Methods for Constructing High-precision Potentiometric Measuring Instruments of Ion Activity. In 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), 2022, 247–252. DOI: https://doi.org/10.1109/ELNANO54667.2022.9927128
Wang H. S. J., Yeh M. H., Chao P. C. P., Tu T. Y., Kao Y. H., Pandey R.: A fast chip implementing a real-time noise resistant algorithm for estimating blood pressure using a non-invasive, cuffless PPG sensor. Microsyst. Technol 26, 2020, 3501–3516. DOI: https://doi.org/10.1007/s00542-020-04946-y
Zhang Q., Zeng X., Hu W., Zhou D.: A Machine Learning-Empowered System for Long-Term Motion-Tolerant Wearable Monitoring of Blood Pressure and Heart Rate With Ear-ECG/PPG. In IEEE Access 5, 2017, 10547–10561. DOI: https://doi.org/10.1109/ACCESS.2017.2707472
American Heart Association. [https://www.heart.org/en/] (access 08/07/2023). DOI: https://doi.org/10.55041/IJSREM25025
AnalogDevices Homepage [https://www.analog.com/media/en/technical-documentation/data-sheets/MAX86150EVSYS.pdf] (access 2023/08/07).
THINKLABS Homepage [https://www.thinklabs.com/] (access 2023/08/07).
Article Details
Abstract views: 451
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
