MODELOWANIE I ANALIZA SKURCZOWEGO I ROZKURCZOWEGO CIŚNIENIA KRWI Z WYKORZYSTANIEM SYGNAŁÓW EKG I PPG
Oleksandr Vasilevskyi
oleksandr.vasilevskyi@austin.utexas.eduUniversity of Texas at Austin, Austin, USA (Stany Zjednoczone)
http://orcid.org/0000-0002-8618-0377
Emanuel Popovici
University College Cork, Cork, Ireland (Irlandia)
http://orcid.org/0000-0001-6813-5030
Volodymyr Sarana
University College Cork, Cork, Ireland (Irlandia)
http://orcid.org/0000-0002-7778-3176
Abstrakt
Biorąc pod uwagę specyfikę wykorzystania systemu oceny MAX86150 do pomiaru sygnałów EKG i PPG, opracowano modele matematyczne do pośredniego określania ciśnienia skurczowego i rozkurczowego używając palców dłoni, które zostały przetestowane w środowisku MATLAB. Otrzymano sygnały EKG i PPG. W oparciu o zaproponowane modele matematyczne, sygnały EKG i PPG zostały przetworzone w pakiecie MATLAB oraz przedstawiono wyniki pośredniego pomiaru ciśnienia krwi.
Słowa kluczowe:
ciśnienie skurczowe, ciśnienie rozkurczowe, sygnały EKG i PPG, pomiar, metoda określania ciśnienia krwiBibliografia
Asgharnezhad H., Shamsi A., Bakhshayeshi I., Alizadehsani R., Chamaani S., Alinejad-Rokny H.: Improving PPG Signal Classification with Machine Learning: The Power of a Second Opinion. In IEEE 24th International Conference on Digital Signal Processing (DSP), 2023, 1–5.
DOI: https://doi.org/10.1109/DSP58604.2023.10167869
Google Scholar
Chao P. C. P., Wu C. C., Nguyen D. H., Nguyen B. S., Huang P. C., Le V. H.: The machine learnings leading the cuffless PPG blood pressure sensors into the next stage. IEEE Sensors Journal 21(11), 2021, 12498–12510.
DOI: https://doi.org/10.1109/JSEN.2021.3073850
Google Scholar
Chiu Y. C., Arand P. W., Shroff S. G., Feldman T., Carroll J. D.: Determination of pulse wave velocities with computerized algorithms. American heart journal 121(5), 1991, 1460–1470.
DOI: https://doi.org/10.1016/0002-8703(91)90153-9
Google Scholar
Dutt D., Shruthi S.: Digital processing of ECG and PPG signals for study of arterial parameters for cardiovascular risk assessment. In IEEE International conference on communications and signal processing (ICCSP), 2015, 1506–1510.
DOI: https://doi.org/10.1109/ICCSP.2015.7322766
Google Scholar
Fortino G., Giampà V.: PPG-based methods for non invasive and continuous blood pressure measurement: an overview and development issues in body sensor networks. IEEE International Workshop on Medical Measurements and Applications, Ottawa, ON, Canada, 2010, 10–13.
DOI: https://doi.org/10.1109/MEMEA.2010.5480201
Google Scholar
Gómez-Quintana S., Schwarz C. E., Shelevytsky I., Shelevytska V., Semenova O., Factor A., Popovici E., Temko A.: A framework for AI-assisted detection of patent ductus arteriosus from neonatal phonocardiogram. In Healthcare 9(2), 2021, 169.
DOI: https://doi.org/10.3390/healthcare9020169
Google Scholar
Haque C. A., Kwon T.-H., Kim K.-D.: Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals. Sensors 22, 2022, 1175.
DOI: https://doi.org/10.3390/s22031175
Google Scholar
Kachuee M., Kiani M. M., Mohammadzade H., Shabany M.: Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Transactions on Biomedical Engineering 64(4), 2016, 859–869.
DOI: https://doi.org/10.1109/TBME.2016.2580904
Google Scholar
Kao Y. H., Chao P. C. P., Wey C. L.: Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing. IEEE J. Sel. Top. Quantum Electron 25, 2019, 18159167.
DOI: https://doi.org/10.1109/JSTQE.2018.2871604
Google Scholar
Liang Y., Chen Z., Ward R., Elgendi M.: Hypertension assessment via ECG and PPG signals: An evaluation using MIMIC database. Diagnostics 8(3), 2018, 65.
DOI: https://doi.org/10.3390/diagnostics8030065
Google Scholar
Man P. K., Cheung K. L., Sangsiri N., Shek W. J., Wong K. L., Chin J. W., Chan T. T., So R. H. Y.: Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring. In Healthcare 10(10), 2022, 2113.
DOI: https://doi.org/10.3390/healthcare10102113
Google Scholar
Morresi N., Casaccia S., Sorcinelli M., Arnesano M., Revel G.: Analysing performances of Heart Rate Variability measurement through a smartwatch. In 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2020, 1–6.
DOI: https://doi.org/10.1109/MeMeA49120.2020.9137211
Google Scholar
Mukkamala R., Hahn J. O., Inan O. T., Mestha L. K., Kim C. S., Töreyin H., Kyal S.: Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. In IEEE Transactions on Biomedical Engineering 62(8), 2015, 1879–1901.
DOI: https://doi.org/10.1109/TBME.2015.2441951
Google Scholar
Payne R. A., Symeonides C. N., Webb D. J., Maxwell S. R.: Pulse transit time measured from the ECG: An unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100, 2006, 136–141.
DOI: https://doi.org/10.1152/japplphysiol.00657.2005
Google Scholar
Pour Ebrahim M., Heydari F., Wu T., Walker K., Joe K., Redoute J. M., Yuce M. R.: Blood pressure estimation using on-body continuous wave radar and photoplethysmogram in various posture and exercise conditions. Scientific Reports 9(1), 2019, 1–13.
DOI: https://doi.org/10.1038/s41598-019-52710-8
Google Scholar
Rundo F., Petralia S., Fallica G., Conoci S.: A nonlinear pattern recognition pipeline for PPG/ECG medical assessments. In Convegno Nazionale Sensori, 2018, 473–480.
DOI: https://doi.org/10.1007/978-3-030-04324-7_57
Google Scholar
Samimi H., Dajani H. R.: Cuffless Blood Pressure Estimation Using Calibrated Cardiovascular Dynamics in the Photoplethysmogram. Bioengineering 9(9), 2022, 446.
DOI: https://doi.org/10.3390/bioengineering9090446
Google Scholar
Semenov A., Osadchuk O., Semenova O., Bisikalo O., Vasilevskyi O., Voznyak O.: Signal Statistic and Informational Parameters of Deterministic Chaos Transistor Oscillators for Infocommunication Systems. 2018 International Scientific-Practical Conference Problems of Infocommunications Science and Technology, 2019, 8632046, 730–734.
DOI: https://doi.org/10.1109/INFOCOMMST.2018.8632046
Google Scholar
Shabaan M., Arshid K., Yaqub M., Jinchao F., Zia M., Bojja G., Iftikhar M., Ghani U., Ambati L., Munir R.: Survey: smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis. BMC medical informatics and decision making, 2020, 1–6.
DOI: https://doi.org/10.1186/s12911-020-01199-7
Google Scholar
Sharma M., Barbosa K., Ho V., Griggs D., Ghirmai T., Krishnan S. K., Hsiai T. K., Chiao J. C., Cao H.: Cuff-less and continuous blood pressure monitoring: a methodological review. Technologies 5(2), 2017, 21.
DOI: https://doi.org/10.3390/technologies5020021
Google Scholar
Trishch R., Nechuiviter O., Dyadyura K., Vasilevskyi O., Tsykhanovska I., Yakovlev M.: Qualimetric method of assessing risks of low quality products. MM Science Journal 2021(4), 2021, 4769–4774.
DOI: https://doi.org/10.17973/MMSJ.2021_10_2021030
Google Scholar
Tseng T. J., Tseng C. H.: Cuffless blood pressure measurement using a microwave near-field self-injection-locked wrist pulse sensor. IEEE Trans. Microw. Theory Tech 68, 2020, 4865–4874.
DOI: https://doi.org/10.1109/TMTT.2020.3011446
Google Scholar
Vasilevskyi O. M., Yakovlev M. Y., Kulakov P. I.: Spectral method to evaluate the uncertainty of dynamic measurements. Technical Electrodynamics 4, 2017, 72–78.
DOI: https://doi.org/10.15407/techned2017.04.072
Google Scholar
Vasilevskyi O. M.: A frequency method for dynamic uncertainty evaluation of measurement during modes of dynamic operation. International Journal of Metrology and Quality Engineering 6(2), 2015, 202.
DOI: https://doi.org/10.1051/ijmqe/2015008
Google Scholar
Vasilevskyi O. M.: Assessing the level of confidence for expressing extended uncertainty: a model based on control errors in the measurement of ion activity. Acta IMEKO 10(2), 2021, 199–203.
DOI: https://doi.org/10.21014/acta_imeko.v10i2.810
Google Scholar
Vasilevskyi O. M.: Calibration method to assess the accuracy of measurement devices using the theory of uncertainty. International Journal of Metrology and Quality Engineering 5(4), 2014, 403.
DOI: https://doi.org/10.1051/ijmqe/2014017
Google Scholar
Vasilevskyi O. M.: Metrological characteristics of the torque measurement of electric motors. International Journal of Metrology and Quality Engineering 8, 2017, 7.
DOI: https://doi.org/10.1051/ijmqe/2017005
Google Scholar
Vasilevskyi O., Koval M., Kravets S.: Indicators of reproducibility and suitability for assessing the quality of production services. Acta IMEKO 10(4), 2021, 54–61.
DOI: https://doi.org/10.21014/acta_imeko.v10i4.814
Google Scholar
Vasilevskyi O., Kulakov P., Kompanets D., Lysenko O. M., Prysyazhnyuk V., Wójcik W., Baitussupov D.: A new approach to assessing the dynamic uncertainty of measuring devices. Proc. SPIE 10808, 2018, 728–735.
Google Scholar
Vasilevskyi O., Voznyak O., Didych V., Sevastianov V., Ruchka O., Rykun V.: Methods for Constructing High-precision Potentiometric Measuring Instruments of Ion Activity. In 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), 2022, 247–252.
DOI: https://doi.org/10.1109/ELNANO54667.2022.9927128
Google Scholar
Wang H. S. J., Yeh M. H., Chao P. C. P., Tu T. Y., Kao Y. H., Pandey R.: A fast chip implementing a real-time noise resistant algorithm for estimating blood pressure using a non-invasive, cuffless PPG sensor. Microsyst. Technol 26, 2020, 3501–3516.
DOI: https://doi.org/10.1007/s00542-020-04946-y
Google Scholar
Zhang Q., Zeng X., Hu W., Zhou D.: A Machine Learning-Empowered System for Long-Term Motion-Tolerant Wearable Monitoring of Blood Pressure and Heart Rate With Ear-ECG/PPG. In IEEE Access 5, 2017, 10547–10561.
DOI: https://doi.org/10.1109/ACCESS.2017.2707472
Google Scholar
American Heart Association. [https://www.heart.org/en/] (access 08/07/2023).
DOI: https://doi.org/10.55041/IJSREM25025
Google Scholar
AnalogDevices Homepage [https://www.analog.com/media/en/technical-documentation/data-sheets/MAX86150EVSYS.pdf] (access 2023/08/07).
Google Scholar
THINKLABS Homepage [https://www.thinklabs.com/] (access 2023/08/07).
Google Scholar
Autorzy
Oleksandr Vasilevskyioleksandr.vasilevskyi@austin.utexas.edu
University of Texas at Austin, Austin, USA Stany Zjednoczone
http://orcid.org/0000-0002-8618-0377
Autorzy
Emanuel PopoviciUniversity College Cork, Cork, Ireland Irlandia
http://orcid.org/0000-0001-6813-5030
Autorzy
Volodymyr SaranaUniversity College Cork, Cork, Ireland Irlandia
http://orcid.org/0000-0002-7778-3176
Statystyki
Abstract views: 261PDF downloads: 270
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Inne teksty tego samego autora
- Kostyantyn Ovchynnykov, Oleksandr Vasilevskyi, Volodymyr Sevastianov, Yurii Polievoda, Aliya Kalizhanova, Bakhyt Yeraliyeva, WYZNACZANIE OPTYMALNEJ CZĘSTOTLIWOŚCI PIERWOTNYCH PRZETWORNIKÓW POMIAROWYCH DO POMIARU GRUBOŚCI POWŁOK DIELEKTRYCZNYCH NA POWIERZCHNIACH METALOWYCH , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 12 Nr 2 (2022)
- Oleksandr Vasilevskyi, Ihor Dudatiev, Kostyantyn Ovchynnykov, NARZĘDZIE KONTROLI STĘŻENIA DWUTLENKU WĘGLA W SPALINACH KOTŁÓW PRACUJĄCE NA PODSTAWIE METODY ABSORPCJI OPTYCZNEJ , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 9 Nr 3 (2019)
- Oleksandr Vasilevskyi, Michael Cullinan, Jared Allison, TEORETYCZNE PODEJŚCIE DO OKREŚLANIA EMISYJNOŚCI MATERIAŁÓW STAŁYCH I JEJ PORÓWNANIE Z BADANIAMI EKSPERYMENTALNYMI NA PRZYKŁADZIE STALI PROSZKOWEJ 316L , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Tom 14 Nr 3 (2024)