EVALUATING THE FEASIBILITY OF THERMOGRAPHIC IMAGES FOR PREDICTING BREAST TUMOR STAGE USING DCNN
Article Sidebar
Open full text
Issue Vol. 14 No. 1 (2024)
-
SOME MORE ON LOGARITHMIC SINGULARITY INTEGRATION IN BOUNDARY ELEMENT METOD
Tomasz Rymarczyk, Jan Sikora5-10
-
ЕLECTROMAGNETIC FIELD EQUATIONS IN NONLINEAR ENVIRONMENT
Viktor Lyshuk, Vasyl Tchaban, Anatolii Tkachuk, Valentyn Zablotskyi, Yosyp Selepyna11-16
-
OPTICAL SPECKLE-FIELD VISIBILITY DIMINISHING BY REDUCTION OF A TEMPORAL COHERENCE
Mikhaylo Vasnetsov, Valeriy Voytsekhovich, Vladislav Ponevchinsky, Nataliia Kachalova, Alina Khodko, Oleksanr Mamuta, Volodymyr Pavlov, Vadym Khomenko, Natalia Manicheva17-20
-
QUALITY INDICATORS OF DETECTION OF SIDE RADIATION SIGNALS FROM MONITOR SCREENS BY A SPECIALIZED TECHNICAL MEANS OF ENEMY INTELLIGENCE
Dmytro Yevgrafov, Yurii Yaremchuk21-26
-
THE IMPACT OF LIGHTNING STRIKE ON HYBRID HIGH VOLTAGE OVERHEAD TRANSMISSION LINE – INSULATED GAS LINE
Samira Boumous, Zouhir Boumous, Yacine Djeghader27-31
-
ENERGY EFFICIENCY OF PHOTOVOLTAIC PANELS DEPENDING ON THE STEP RESOLUTION OF TRACKING SYSTEM
Kamil Płachta32-36
-
DIGITAL IMAGE RESTORATION USING SURF ALGORITHM
Shanmukhaprasanthi Tammineni, Swaraiya Madhuri Rayavarapu, Sasibhushana Rao Gottapu, Raj Kumar Goswami37-40
-
TENSOR AND VECTOR APPROACHES TO OBJECTS RECOGNITION BY INVERSE FEATURE FILTERS
Roman Kvуetnyy, Yuriy Bunyak, Olga Sofina, Volodymyr Kotsiubynskyi, Tetiana Piliavoz, Olena Stoliarenko, Saule Kumargazhanova41-45
-
ARCHITECTURAL AND STRUCTURAL AND FUNCTIONAL FEATURES OF THE ORGANIZATION OF PARALLEL-HIERARCHICAL MEMORY
Leonid Timchenko, Natalia Kokriatska, Volodymyr Tverdomed, Iryna Yepifanova, Yurii Didenko, Dmytro Zhuk, Maksym Kozyr, Iryna Shakhina46-52
-
SIMULATION AND COMPUTER MODELING OF BRIDGE STRUCTURES DYNAMICS USING ANSYS
Anzhelika Stakhova, Adrián Bekö53-56
-
ENHANCING CROP HEALTH THROUGH DIGITAL TWIN FOR DISEASE MONITORING AND NUTRIENT BALANCE
Sobhana Mummaneni, Tribhuvana Sree Sappa, Venkata Gayathri Devi Katakam57-62
-
REVIEW OF MODELLING APPROACHES FOR WEBSITE-RELATED PREDICTIONS
Patryk Mauer63-66
-
FORMATION OF HIGHLY SPECIALIZED CHATBOTS FOR ADVANCED SEARCH
Andrii Yarovyi, Dmytro Kudriavtsev67-70
-
METHOD FOR CALCULATING THE INFORMATION SECURITY INDICATOR IN SOCIAL MEDIA WITH CONSIDERATION OF THE PATH DURATION BETWEEN CLIENTS
Volodymyr Akhramovych, Yuriy Pepa, Anton Zahynei, Vadym Akhramovych, Taras Dzyuba, Ihor Danylov71-77
-
CORRESPONDENCE MATCHING IN 3D MODELS FOR 3D HAND FITTING
Maksym Tymkovych, Oleg Avrunin, Karina Selivanova, Alona Kolomiiets, Taras Bednarchyk, Saule Smailova78-82
-
GENETIC ALGORITHM-BASED DECISION TREE OPTIMIZATION FOR DETECTION OF DEMENTIA THROUGH MRI ANALYSIS
Govada Anuradha, Harini Davu, Muthyalanaidu Karri83-89
-
MEDICAL FUZZY-EXPERT SYSTEM FOR PREDICTION OF ENGRAFTMENT DEGREE OF DENTAL IMPLANTS IN PATIENTS WITH CHRONIC LIVER DISEASE
Vitaliy Polishchuk, Sergii Pavlov, Sergii Polishchuk, Sergii Shuvalov, Andriy Dalishchuk, Natalia Sachaniuk-Kavets’ka, Kuralay Mukhsina, Abilkaiyr Nazerke90-94
-
ROOT SURFACE TEMPERATURE MEASUREMENT DURING ROOT CANAL OBTURATION
Les Hotra, Oksana Boyko, Igor Helzhynskyy, Hryhorii Barylo, Pylyp Skoropad, Alla Ivanyshyn, Olena Basalkevych95-98
-
EVALUATING THE FEASIBILITY OF THERMOGRAPHIC IMAGES FOR PREDICTING BREAST TUMOR STAGE USING DCNN
Zakaryae Khomsi, Mohamed El Fezazi, Achraf Elouerghi, Larbi Bellarbi99-104
-
A COMPREHENSIVE STUDY: INTRACRANIAL ANEURYSM DETECTION VIA VGG16-DENSENET HYBRID DEEP LEARNING ON DSA IMAGES
Sobhana Mummaneni, Sasi Tilak Ravi, Jashwanth Bodedla, Sree Ram Vemulapalli, Gnana Sri Kowsik Varma Jagathapurao105-110
-
DEFORMATIONS OF SOIL MASSES UNDER THE ACTION OF HUMAN-INDUCED FACTORS
Mykola Kuzlo, Viktor Moshynskyi, Nataliia Zhukovska, Viktor Zhukovskyy111-114
-
RUNNING A WORKFLOW WITHOUT WORKFLOWS: A BASIC ALGORITHM FOR DYNAMICALLY CONSTRUCTING AND TRAVERSING AN IMPLIED DIRECTED ACYCLIC GRAPH IN A NON-DETERMINISTIC ENVIRONMENT
Fedir Smilianets, Oleksii Finogenov115-118
-
INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM
Dauren Darkenbayev, Arshyn Altybay, Zhaidargul Darkenbayeva, Nurbapa Mekebayev119-122
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
Early-stage and advanced breast cancer represent distinct disease processes. Thus, identifying the stage of tumor is a crucial procedure for optimizing treatment efficiency. Breast thermography has demonstrated significant advancements in non-invasive tumor detection. However, the accurate determination of tumor stage based on temperature distribution represents a challenging task, primarily due to the scarcity of thermal images labeled with the stage of tumor. This work proposes a transfer learning approach based on Deep Convolutional Neural Network (DCNN) with thermal images for predicting breast tumor stage. Various tumor stage scenarios including early and advanced tumors are embedded in a 3D breast model using the Finite Element Method (FEM) available on COMSOL Multiphysics software. This allows the generation of the thermal image dataset for training the DCNN model. A detailed investigation of the hyperparameters tuning process has been conducted to select the optimal predictive model. Thus, various evaluation metrics, including accuracy, sensitivity, and specificity, are computed using the confusion matrix. The results demonstrate the DCNN model's ability to accurately predict breast tumor stage from thermographic images, with an accuracy of 98.2%, a sensitivity of 98.8%, and a specificity of 97.7%. This study indicates the promising potential of thermographic images in enhancing deep learning algorithms for the non-invasive prediction of breast tumor stage.
Keywords:
References
Ahlawat P. et al.: Tumour Volumes: Predictors of Early Treatment Response in Locally Advanced Head and Neck Cancers Treated with Definitive Chemoradiation. Reports of Practical Oncology and Radiotherapy 21(5), 2016, 419–426 [https://doi.org/10.1016/j.rpor.2016.04.002]. DOI: https://doi.org/10.1016/j.rpor.2016.04.002
Alghamdi S. et al.: The Impact of Reporting Tumor Size in Breast Core Needle Biopsies on Tumor Stage: A Retrospective Review of Five Years of Experience at a Single Institution. Annals of Diagnostic Pathology, vol. 38, 2019, 26–28 [https://doi.org/10.1016/j.anndiagpath.2018.10.002]. DOI: https://doi.org/10.1016/j.anndiagpath.2018.10.002
De Miglio M. R., Mello-Thoms C.: Editorial: Reviews in Breast Cancer. Frontiers in Oncology 13, 2023, 1161583
[https://doi.org/10.3389/fonc.2023.1161583]. DOI: https://doi.org/10.3389/fonc.2023.1161583
Farhangi F.: Investigating the Role of Data Preprocessing, Hyperparameters Tuning, and Type of Machine Learning Algorithm in the Improvement of Drowsy EEG Signal Modeling. Intelligent Systems with Applications 15, 2022, 200100 [https://doi.org/10.1016/j.iswa.2022.200100]. DOI: https://doi.org/10.1016/j.iswa.2022.200100
Gavazzi S. et al.: Advanced Patient-Specific Hyperthermia Treatment Planning. International Journal of Hyperthermia 37(1), 2020, 992–1007 [https://doi.org/10.1080/02656736.2020.1806361]. DOI: https://doi.org/10.1080/02656736.2020.1806361
Giuliano A. E. et al.: Breast Cancer-Major Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA: A Cancer Journal for Clinicians 67(4), 2017, 290–303 [https://doi.org/10.3322/caac.21393]. DOI: https://doi.org/10.3322/caac.21393
Horvath L. E. et al.: The Relationship between Tumor Size and Stage in Early versus Advanced Ovarian Cancer. Medical Hypotheses 80(5), 2013, 684–687 [https://doi.org/10.1016/j.mehy.2013.01.027]. DOI: https://doi.org/10.1016/j.mehy.2013.01.027
Huang W. et al.: Wearable Health Monitoring System Based on Layered 3D-Mobilenet. Procedia Computer Science 202, 2022, 373–378 [https://doi.org/10.1016/j.procs.2022.04.051]. DOI: https://doi.org/10.1016/j.procs.2022.04.051
Jacob G. et al.: Breast Cancer Detection: A Comparative Review on Passive and Active Thermography. Infrared Physics and Technology 134, 2023, 104932 [https://doi.org/10.1016/j.infrared.2023.104932]. DOI: https://doi.org/10.1016/j.infrared.2023.104932
Jones S. C. et al.: Australian Women’s Perceptions of Breast Cancer Risk Factors and the Risk of Developing Breast Cancer. Women’s Health Issues 21(5), 2011, 353–360 [https://doi.org/10.1016/j.whi.2011.02.004]. DOI: https://doi.org/10.1016/j.whi.2011.02.004
Kandlikar S. G. et al.: Infrared Imaging Technology for Breast Cancer Detection – Current Status, Protocols and New Directions. International Journal of Heat and Mass Transfer 108, 2017, 2303–2320 [https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.086]. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.086
Khomsi Z. et al.: Towards Development of Synthetic Data in Surface Thermography to Enable Deep Learning Models for Early Breast Tumor Prediction. Masrour T. et al. (eds): Artificial Intelligence and Industrial Applications. Springer Cham, Switzerland, 2023, 356–365 [https://doi.org/10.1007/978-3-031-43520-1_30]. DOI: https://doi.org/10.1007/978-3-031-43520-1_30
Lu S. Y. et al.: A Classification Method for Brain MRI via MobileNet and Feedforward Network with Random Weights. Pattern Recognition Letters 140, 2020, 252–260 [https://doi.org/10.1016/j.patrec.2020.10.017]. DOI: https://doi.org/10.1016/j.patrec.2020.10.017
Magario M. B. et al.: Mammography Coverage and Tumor Stage in the Opportunistic Screening Context. Clinical Breast Cancer 19(6), 2019, 456–459 [https://doi.org/10.1016/j.clbc.2019.04.014]. DOI: https://doi.org/10.1016/j.clbc.2019.04.014
Muruganandam S. et al.: A Deep Learning Based Feed Forward Artificial Neural Network to Predict the K-Barriers for Intrusion Detection Using a Wireless Sensor Network. Measurement: Sensors 25, 2023, 100613 [https://doi.org/10.1016/j.measen.2022.100613]. DOI: https://doi.org/10.1016/j.measen.2022.100613
Ragab M. et al.: Heat Transfer in Biological Spherical Tissues during Hyperthermia of Magnetoma. Biology 10(12), 2021, 1–16 [https://doi.org/10.3390/biology10121259]. DOI: https://doi.org/10.3390/biology10121259
Rahman M. H. et al.: Real-Time Face Mask Position Recognition System Based on MobileNet Model. Smart Health 28, 2023, 100382 [https://doi.org/10.1016/j.smhl.2023.100382]. DOI: https://doi.org/10.1016/j.smhl.2023.100382
Sardanelli F., Helbich T. H.: Mammography: EUSOBI Recommendations for Women’s Information. Insights into Imaging 3(1), 2012, 7–10 [https://doi.org/10.1007/s13244-011-0127-y]. DOI: https://doi.org/10.1007/s13244-011-0127-y
Wang H. et al.: A Model for Detecting Safety Hazards in Key Electrical Sites Based on Hybrid Attention Mechanisms and Lightweight Mobilenet. Energy Reports 7, 2021, 716–724 [https://doi.org/10.1016/j.egyr.2021.09.200]. DOI: https://doi.org/10.1016/j.egyr.2021.09.200
Zhu D. et al.: Efficient Precision-Adjustable Architecture for Softmax Function in Deep Learning. IEEE Transactions on Circuits and Systems II: Express Briefs 67(12), 2020, 3382–3386 [https://doi.org/10.1109/TCSII.2020.3002564]. DOI: https://doi.org/10.1109/TCSII.2020.3002564
Article Details
Abstract views: 324

