EVALUATING THE FEASIBILITY OF THERMOGRAPHIC IMAGES FOR PREDICTING BREAST TUMOR STAGE USING DCNN

Zakaryae Khomsi

zakaryae_khomsi@um5.ac.ma
Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) (Morocco)
https://orcid.org/0000-0003-2321-9622

Mohamed El Fezazi


Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) (Morocco)
https://orcid.org/0000-0001-6072-325X

Achraf Elouerghi


Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) (Morocco)
https://orcid.org/0000-0001-5880-0172

Larbi Bellarbi


Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) (Morocco)

Abstract

Early-stage and advanced breast cancer represent distinct disease processes. Thus, identifying the stage of tumor is a crucial procedure for optimizing treatment efficiency. Breast thermography has demonstrated significant advancements in non-invasive tumor detection. However, the accurate determination of tumor stage based on temperature distribution represents a challenging task, primarily due to the scarcity of thermal images labeled with the stage of tumor. This work proposes a transfer learning approach based on Deep Convolutional Neural Network (DCNN) with thermal images for predicting breast tumor stage. Various tumor stage scenarios including early and advanced tumors are embedded in a 3D breast model using the Finite Element Method (FEM) available on COMSOL Multiphysics software. This allows the generation of the thermal image dataset for training the DCNN model. A detailed investigation of the hyperparameters tuning process has been conducted to select the optimal predictive model. Thus, various evaluation metrics, including accuracy, sensitivity, and specificity, are computed using the confusion matrix. The results demonstrate the DCNN model's ability to accurately predict breast tumor stage from thermographic images, with an accuracy of 98.2%, a sensitivity of 98.8%, and a specificity of 97.7%. This study indicates the promising potential of thermographic images in enhancing deep learning algorithms for the non-invasive prediction of breast tumor stage.


Keywords:

image analysis, classification, tumor prediction, transfer learning, thermography

Ahlawat P. et al.: Tumour Volumes: Predictors of Early Treatment Response in Locally Advanced Head and Neck Cancers Treated with Definitive Chemoradiation. Reports of Practical Oncology and Radiotherapy 21(5), 2016, 419–426 [https://doi.org/10.1016/j.rpor.2016.04.002].
  Google Scholar

Alghamdi S. et al.: The Impact of Reporting Tumor Size in Breast Core Needle Biopsies on Tumor Stage: A Retrospective Review of Five Years of Experience at a Single Institution. Annals of Diagnostic Pathology, vol. 38, 2019, 26–28 [https://doi.org/10.1016/j.anndiagpath.2018.10.002].
  Google Scholar

De Miglio M. R., Mello-Thoms C.: Editorial: Reviews in Breast Cancer. Frontiers in Oncology 13, 2023, 1161583
  Google Scholar

[https://doi.org/10.3389/fonc.2023.1161583].
  Google Scholar

Farhangi F.: Investigating the Role of Data Preprocessing, Hyperparameters Tuning, and Type of Machine Learning Algorithm in the Improvement of Drowsy EEG Signal Modeling. Intelligent Systems with Applications 15, 2022, 200100 [https://doi.org/10.1016/j.iswa.2022.200100].
  Google Scholar

Gavazzi S. et al.: Advanced Patient-Specific Hyperthermia Treatment Planning. International Journal of Hyperthermia 37(1), 2020, 992–1007 [https://doi.org/10.1080/02656736.2020.1806361].
  Google Scholar

Giuliano A. E. et al.: Breast Cancer-Major Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA: A Cancer Journal for Clinicians 67(4), 2017, 290–303 [https://doi.org/10.3322/caac.21393].
  Google Scholar

Horvath L. E. et al.: The Relationship between Tumor Size and Stage in Early versus Advanced Ovarian Cancer. Medical Hypotheses 80(5), 2013, 684–687 [https://doi.org/10.1016/j.mehy.2013.01.027].
  Google Scholar

Huang W. et al.: Wearable Health Monitoring System Based on Layered 3D-Mobilenet. Procedia Computer Science 202, 2022, 373–378 [https://doi.org/10.1016/j.procs.2022.04.051].
  Google Scholar

Jacob G. et al.: Breast Cancer Detection: A Comparative Review on Passive and Active Thermography. Infrared Physics and Technology 134, 2023, 104932 [https://doi.org/10.1016/j.infrared.2023.104932].
  Google Scholar

Jones S. C. et al.: Australian Women’s Perceptions of Breast Cancer Risk Factors and the Risk of Developing Breast Cancer. Women’s Health Issues 21(5), 2011, 353–360 [https://doi.org/10.1016/j.whi.2011.02.004].
  Google Scholar

Kandlikar S. G. et al.: Infrared Imaging Technology for Breast Cancer Detection – Current Status, Protocols and New Directions. International Journal of Heat and Mass Transfer 108, 2017, 2303–2320 [https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.086].
  Google Scholar

Khomsi Z. et al.: Towards Development of Synthetic Data in Surface Thermography to Enable Deep Learning Models for Early Breast Tumor Prediction. Masrour T. et al. (eds): Artificial Intelligence and Industrial Applications. Springer Cham, Switzerland, 2023, 356–365 [https://doi.org/10.1007/978-3-031-43520-1_30].
  Google Scholar

Lu S. Y. et al.: A Classification Method for Brain MRI via MobileNet and Feedforward Network with Random Weights. Pattern Recognition Letters 140, 2020, 252–260 [https://doi.org/10.1016/j.patrec.2020.10.017].
  Google Scholar

Magario M. B. et al.: Mammography Coverage and Tumor Stage in the Opportunistic Screening Context. Clinical Breast Cancer 19(6), 2019, 456–459 [https://doi.org/10.1016/j.clbc.2019.04.014].
  Google Scholar

Muruganandam S. et al.: A Deep Learning Based Feed Forward Artificial Neural Network to Predict the K-Barriers for Intrusion Detection Using a Wireless Sensor Network. Measurement: Sensors 25, 2023, 100613 [https://doi.org/10.1016/j.measen.2022.100613].
  Google Scholar

Ragab M. et al.: Heat Transfer in Biological Spherical Tissues during Hyperthermia of Magnetoma. Biology 10(12), 2021, 1–16 [https://doi.org/10.3390/biology10121259].
  Google Scholar

Rahman M. H. et al.: Real-Time Face Mask Position Recognition System Based on MobileNet Model. Smart Health 28, 2023, 100382 [https://doi.org/10.1016/j.smhl.2023.100382].
  Google Scholar

Sardanelli F., Helbich T. H.: Mammography: EUSOBI Recommendations for Women’s Information. Insights into Imaging 3(1), 2012, 7–10 [https://doi.org/10.1007/s13244-011-0127-y].
  Google Scholar

Wang H. et al.: A Model for Detecting Safety Hazards in Key Electrical Sites Based on Hybrid Attention Mechanisms and Lightweight Mobilenet. Energy Reports 7, 2021, 716–724 [https://doi.org/10.1016/j.egyr.2021.09.200].
  Google Scholar

Zhu D. et al.: Efficient Precision-Adjustable Architecture for Softmax Function in Deep Learning. IEEE Transactions on Circuits and Systems II: Express Briefs 67(12), 2020, 3382–3386 [https://doi.org/10.1109/TCSII.2020.3002564].
  Google Scholar

Download


Published
2024-03-31

Cited by

Khomsi, Z., El Fezazi, M., Elouerghi, A., & Bellarbi, L. (2024). EVALUATING THE FEASIBILITY OF THERMOGRAPHIC IMAGES FOR PREDICTING BREAST TUMOR STAGE USING DCNN. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(1), 99–104. https://doi.org/10.35784/iapgos.5555

Authors

Zakaryae Khomsi 
zakaryae_khomsi@um5.ac.ma
Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) Morocco
https://orcid.org/0000-0003-2321-9622

Authors

Mohamed El Fezazi 

Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) Morocco
https://orcid.org/0000-0001-6072-325X

Authors

Achraf Elouerghi 

Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) Morocco
https://orcid.org/0000-0001-5880-0172

Authors

Larbi Bellarbi 

Mohammed V University in Rabat, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Electronic Systems Sensors and Nanobiotechnologies (E2SN) Morocco

Statistics

Abstract views: 170
PDF downloads: 129


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)