CONCEPT AND VALIDATION OF A SYSTEM FOR RECORDING VIBROACOUSTIC SIGNALS OF THE KNEE JOINT
Article Sidebar
Open full text
Issue Vol. 14 No. 2 (2024)
-
HAND MOVEMENT DISORDERS TRACKING BY SMARTPHONE BASED ON COMPUTER VISION METHODS
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Dmytro Palii, Sergii Tymchyk , Dana Turlykozhayeva5-10
-
MEANS OF ANALYZING PARAMETERS OF SPEECH SIGNAL TRANSMISSION AND REPRODUCTION
Olexiy Azarov, Larysa Azarova, Iurii Krak, Leonid Krupelnitskyi, Anzhelika Azarova, Veronika Azarova11-16
-
CONCEPT AND VALIDATION OF A SYSTEM FOR RECORDING VIBROACOUSTIC SIGNALS OF THE KNEE JOINT
Robert Karpiński, Anna Machrowska, Marcin Maciejewski, Józef Jonak, Przemysław Krakowski17-21
-
A COYOTE-INSPIRED APPROACH FOR SYSTEMIC LUPUS ERYTHEMATOSUS PREDICTION USING NEURAL NETWORKS
Sobhana Mummaneni, Pragathi Dodda, Naga Deepika Ginjupalli22-27
-
CHANGE OF FREQUENCY CHARACTERISTICS OF A FILTER USING A REACTOR WITH SMOOTHLY ADJUSTABLE INDUCTANCE
Vasyl Hudym, Vira Kosovska, Huthaifa Al_Issa, Taras Shchur, Oleksandr Miroshnyk, Sławomir Ziarkowski28-33
-
STUDY OF STARTING MODES OF SINGLE-PHASE INDUCTION MOTORS WHEN CHANGING THE PARAMETERS OF THE STATOR WINDINGS, PHASE-SHIFTING CAPACITOR AND SUPPLY VOLTAGE
Suad Omar Aldaikh, Mohannad O. Rawashdeh, Lina H. Hussienat, Mohamed Qawaqzeh, Oleksiy Iegorov, Olga Iegorova, Mykola Kundenko, Dmytro Danylchenko, Oleksandr Miroshnyk, Taras Shchur34-41
-
EVALUATION OF THE ENERGY CHARACTERISTICS OF THE INFRARED DRYING PROCESS OF RAPESEED AND SOYBEANS WITH A VIBRATING WAVE DRIVER
Igor Palamarchuk, Vladyslav Palamarchuk, Marija Zheplinska42-46
-
JUSTIFICATION OF THE POSSIBILITY OF BUILDING AN INTEGRATED ULTRASONIC MEASURING TRANSDUCER OF NATURAL GAS CONSUMPTION
Yosyp Bilynsky, Аndrii Stetsenko, Konstantin Ogorodnik47-50
-
NUMERICAL STUDY OF THE POSSIBILITY OF USING ADHESIVE JOINTS FOR INDIRECT MEASUREMENTS FOR STRESS DISTRIBUTION
Piotr Kisała, Paweł Wiśniewski51-55
-
A MODIFIED METHOD OF SPECTRAL ANALYSIS OF RADIO SIGNALS USING THE OPERATOR APPROACH FOR THE FOURIER TRANSFORM
Valentyn Sobchuk, Serhii Laptiev, Tetiana Laptievа, Oleg Barabash, Oleksandr Drobyk, Andrii Sobchuk56-61
-
ITERATIVE DECODING OF SHORT LOW-DENSITY PARITY-CHECK CODES BASED ON DIFFERENTIAL EVOLUTION
Mykola Shtompel, Sergii Prykhodko62-65
-
A REVIEW OF GENERATIVE ADVERSARIAL NETWORKS FOR SECURITY APPLICATIONS
Swarajya Madhuri Rayavarapu, Shanmukha Prasanthi Tammineni, Sasibhushana Rao Gottapu, Aruna Singam66-70
-
IoT FOR PREDICTIVE MAINTENANCE OF CRITICAL MEDICAL EQUIPMENT IN A HOSPITAL STRUCTURE
Maroua Guissi, My Hachem El Yousfi Alaoui, Larbi Belarbi, Asma Chaik71-76
-
APPLICATION OF RESNET-152 NEURAL NETWORKS TO ANALYZE IMAGES FROM UAV FOR FIRE DETECTION
Nataliia Stelmakh, Svitlana Mandrovska, Roman Galagan77-82
-
IDENTIFICATION OF SALT-AFFECTED SOILS IN THE COASTAL AREA OF KRISHNA DISTRICT, ANDHRA PRADESH, USING REMOTE SENSING DATA AND MACHINE LEARNING TECHNIQUES
Govada Anuradha, Venkata Sai Sankara Vineeth Chivukula, Naga Ganesh Kothangundla83-88
-
PERFORMANCE EVALUATION FOR FACE MASK DETECTION BASED ON MULT MODIFICATION OF YOLOV8 ARCHITECTURE
Muna AL-Shamdeen, Fawziya Mahmood Ramo89-95
-
EVALUATION OF ENGINEERING SOLUTIONS IN THE DEVELOPMENT OF THE PROCUREMENT SECTION FOR THE METAL CONSTRUCTION WORKSHOP
Bogdan Palchevskyi, Lubov Krestyanpol96-100
-
EVALUATING THE PERFORMANCE OF BITCOIN PRICE FORECASTING USING MACHINE LEARNING TECHNIQUES ON HISTORICAL DATA
Mamun Ahmed, Sayma Alam Suha, Fahamida Hossain Mahi, Forhad Uddin Ahmed101-108
-
METHODS OF INTELLIGENT DATA ANALYSIS USING NEURAL NETWORKS IN DIAGNOSIS
Volodymyr Lyfar, Olena Lyfar, Volodymyr Zynchenko109-112
-
IMPROVING PARAMETERS OF V-SUPPORT VECTOR REGRESSION WITH FEATURE SELECTION IN PARALLEL BY USING QUASI-OPPOSITIONAL AND HARRIS HAWKS OPTIMIZATION ALGORITHM
Omar Mohammed Ismael, Omar Saber Qasim, Zakariya Yahya Algamal113-118
-
AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS
Watchara Wongsa, Pikul Puphasuk, Jeerayut Wetweerapong119-126
-
MODELING THE CHOICE OF AN ONLINE COURSE FOR INFORMATION HYGIENE SKILLS USING THE SAATY METHOD
Yuliia Rudenko, Karen Ahadzhanov-Honsales, Svitlana Ahadzhanova, Alla Batalova, Olena Bieliaieva, Artem Yurchenko, Olena Semenikhina127-132
-
REVIEW OF THE ACHIEVEMENTS OF EMPLOYEES OF THE LUBLIN UNIVERSITY OF TECHNOLOGY IN THE FIELD OF FUZZY SET UTILIZATION
Maciej Celiński, Adam Kiersztyn133-140
-
MODELING ROBOTECHNICAL MECHATRONIC COMPLEXES IN V-REP PROGRAM
Laura Yesmakhanova141-148
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
przemyslaw.krakowski84@gmail.com
Abstract
Cartilage degeneration is a serious health condition in modern society, leading to problems in mobility and significant reduction in the quality of life of patients of all ages. It is mainly caused by obesity, workload, sports or trauma to the joint. Proper diagnosis is crucial to implement appropriate treatment to stop the further degeneration of the tissue. Usually the assessment is performed by using magnetic resonance. This paper describes the design and application of an alternative measurement system for vibroartography of the knee joint. The use of such device allows for fast, safe, easy and cheap assessment of joint condition, which in turn can lead to proper treatment planning. Similar portable systems can be rapidly deployed and used by entry level medical staff in hospitals, clinics or at patient’s home. The system consists of an orthosis, set of three vibroacoustic sensors, encoder for reading knee position, microcontroller with galvanic barrier and battery power and a computer for data storage and processing. The system is light, simple and portable. Data is recorded in both closed and open kinematic chains. Results show over 90% diagnostic accuracy based on the data obtained in the process of testing this device. In the future, the system will be further miniaturized and completely placed on the orthosis, leading to more portability and diagnostic merit.
Keywords:
References
ADUM4160 Datasheet and Product Info | Analog Devices [https://www.analog.com/en/products/adum4160.html].
Andersen R.E., Arendt-Nielsen L., Madeleine P.: Knee joint vibroarthrography of asymptomatic subjects during loaded flexion-extension movements. Med Biol Eng Comput. 56(12), 2018, 2301–2312. DOI: https://doi.org/10.1007/s11517-018-1856-6
Blodgett W.E.: Auscultation of the Knee Joint. The Boston Medical and Surgical Journal. 146(3), 1902, 63–66. DOI: https://doi.org/10.1056/NEJM190201161460304
Cameron K. et al.: Incidence of Physician-Diagnosed Osteoarthritis Among Active Duty United States Military Service Members. Arthritis & Rheumatology 63(10), 2011, 2974–2982. DOI: https://doi.org/10.1002/art.30498
Castagnini F. et al.: Total Knee Replacement in Young Patients: Survival and Causes of Revision in a Registry Population. The Journal of Arthroplasty 32(11), 2017, 3368–3372. DOI: https://doi.org/10.1016/j.arth.2017.05.052
Cibere J. et al.: Natural history of cartilage damage and osteoarthritis progression on magnetic resonance imaging in a population-based cohort with knee pain. Osteoarthritis and Cartilage 19(6), 2011, 683–688. DOI: https://doi.org/10.1016/j.joca.2011.02.008
Contact microphone CM-01B, Technical Data Sheet. 2015.
Falkowicz K., Kulisz M.: Prediction of Buckling Behaviour of Composite Plate Element Using Artificial Neural Networks. Adv Sci Technol Res J. 18(1), 2024, 231–243. DOI: https://doi.org/10.12913/22998624/177399
Goldring M.B.: Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Practice & Research Clinical Rheumatology 20(5), 2006,1003–1025. DOI: https://doi.org/10.1016/j.berh.2006.06.003
Jonak J. et al.: A preliminary study on the use of EEMD-RQA algorithms in the detection of degenerative changes in knee joints. IOP Conf Ser: Mater Sci Eng. 710(1), 2019, 012037. DOI: https://doi.org/10.1088/1757-899X/710/1/012037
Karpiński R. et al.: Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN – Part I: Femoral-Tibial Joint. Sensors 22(6), 2022, 2176. DOI: https://doi.org/10.3390/s22062176
Karpiński R. et al.: Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN – Part II: Patellofemoral Joint. Sensors 22(10), 2022, 3765. DOI: https://doi.org/10.3390/s22103765
Karpiński R. et al.: Comparison of selected classification methods based on machine learning as a diagnostic tool for knee joint cartilage damage based on generated vibroacoustic processes. Appl Comput Sci. 19(4), 2023, 136–150. DOI: https://doi.org/10.35784/acs-2023-40
Karpiński R., Machrowska A., Maciejewski M.: Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science 15(1), 2019, 36–48. DOI: https://doi.org/10.35784/acs-2019-03
Karpiński R. et al.: Evaluation of the Effect of Selected Physiological Fluid Contaminants on the Mechanical Properties of Selected Medium-Viscosity PMMA Bone Cements. Materials 15(6), 2022, 2197. DOI: https://doi.org/10.3390/ma15062197
Karpiński R.: Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science 18(2), 2022, 71–85. DOI: https://doi.org/10.35784/acs-2022-14
Kellgren J.H., Lawrence J.S.: Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 16(4), 1957, 494–502. DOI: https://doi.org/10.1136/ard.16.4.494
Kim K. S., Seo J. H., Song C. G.: An Acoustical Evaluation of Knee Sound for Non-invasive Screening and Early Detection of Articular Pathology. J Med Syst. 36(2), 2012, 715–722. DOI: https://doi.org/10.1007/s10916-010-9539-3
Kiselev J. et al.: Detection of osteoarthritis using acoustic emission analysis. Medical Engineering & Physics 65, 2019, 57–60. DOI: https://doi.org/10.1016/j.medengphy.2019.01.002
Krakowski P. et al.: Knee MRI Underestimates the Grade of Cartilage Lesions. Applied Sciences 11(4), 2021, 1552. DOI: https://doi.org/10.3390/app11041552
Krakowski P. et al.: Evaluation of diagnostic accuracy of physical examination and MRI for ligament and meniscus injuries. J Phys: Conf Ser. 1736, 2021, 012027. DOI: https://doi.org/10.1088/1742-6596/1736/1/012027
Krakowski P. et al.: Short-Term Effects of Arthroscopic Microfracturation of Knee Chondral Defects in Osteoarthritis. Applied Sciences 10(23), 2020, 8312. DOI: https://doi.org/10.3390/app10238312
Krakowski P. et al.: Evaluation of the diagnostic accuracy of MRI in detection of knee cartilage lesions using Receiver Operating Characteristic curves. J Phys: Conf Ser. 1736, 2021, 012028. DOI: https://doi.org/10.1088/1742-6596/1736/1/012028
Krakowski P. et al.: Comparison of Diagnostic Accuracy of Physical Examination and MRI in the Most Common Knee Injuries. Applied Sciences 9(19), 2019, 4102. DOI: https://doi.org/10.3390/app9194102
Kręcisz K., Bączkowicz D.: Analysis and multiclass classification of pathological knee joints using vibroarthrographic signals. Computer Methods and Programs in Biomedicine 154, 2018, 37–44. DOI: https://doi.org/10.1016/j.cmpb.2017.10.027
Long H. et al.: Prevalence Trends of Site‐Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis & Rheumatology 74(7), 2022, 1172–1183. DOI: https://doi.org/10.1002/art.42089
Machrowska A. et al: Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science 16(3), 2020, 87–101. DOI: https://doi.org/10.35784/acs-2020-24
Machrowska A. et al.: Diagnostic factors for opened and closed kinematic chain of vibroarthrography signals. Applied Computer Science 15(3), 2019, 34–44. DOI: https://doi.org/10.35784/acs-2019-19
Machrowska A. et al.: Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials 13(23), 2020, 5419. DOI: https://doi.org/10.3390/ma13235419
Nevalainen M. T. et al.: Acoustic emissions and kinematic instability of the osteoarthritic knee joint: comparison with radiographic findings. Sci Rep. 11(1), 2021, 19558. DOI: https://doi.org/10.1038/s41598-021-98945-2
Prior J. et al.: Analysis of high frequency acoustic emission signals as a new approach for assessing knee osteoarthritis. Annals of the Rheumatic Diseases 69(5), 2010, 929–930. DOI: https://doi.org/10.1136/ard.2009.112599
Quicke J. G. et al.: Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthritis and Cartilage 30(2), 2022, 196–206. DOI: https://doi.org/10.1016/j.joca.2021.10.003
Reyes C. et al.: Socio-economic status and the risk of developing hand, hip or knee osteoarthritis: a region-wide ecological study. Osteoarthritis and Cartilage 23(8), 2015, 1323–1329. DOI: https://doi.org/10.1016/j.joca.2015.03.020
Roberts V. I., Esler C. N. A., Harper W. M.: A 15-year follow-up study of 4606 primary total knee replacements. Journal of Bone and Joint Surgery – British Volume 89-B(11), 2007, 1452–1456. DOI: https://doi.org/10.1302/0301-620X.89B11.19783
Roemer F. et al.: Increased risk for radiographic osteoarthritis features in young active athletes: a cross-sectional matched case–control study. Osteoarthritis and Cartilage 23(2), 2015, 239–243. DOI: https://doi.org/10.1016/j.joca.2014.11.011
Schouten J. et al.: An update on the relationship between occupational factors and osteoarthritis of the hip and knee. Current Opinion in Rheumatology 14(2), 2002, 89–92. DOI: https://doi.org/10.1097/00002281-200203000-00002
Semiz B. et al.: Using Knee Acoustical Emissions for Sensing Joint Health in Patients With Juvenile Idiopathic Arthritis: A Pilot Study. IEEE Sensors J. 18(22), 2018, 9128–9136. DOI: https://doi.org/10.1109/JSEN.2018.2869990
Solivetti F. M. et al.: Appropriateness of knee MRI prescriptions: clinical, economic and technical issues. La radiologia medica 121(4), 2016, 315–322. DOI: https://doi.org/10.1007/s11547-015-0606-1
Szabelski J. et al.: Analysis of the Effect of Component Ratio Imbalances on Selected Mechanical Properties of Seasoned, Medium Viscosity Bone Cements. Materials 15(16), 2022, 5577. DOI: https://doi.org/10.3390/ma15165577
Van den Borne M. P. J. et al.: International Cartilage Repair Society (ICRS and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage 15(12), 2007, 1397–1402. DOI: https://doi.org/10.1016/j.joca.2007.05.005
Zegarowa orteza stawu kolanowego BREG – komfort i stabilizacja (T-scope Knee) – Sklep Orteo.pl [https://www.orteo.pl/zegarowa-orteza-stawu-kolanowego-breg-komfort-i-stabilizacja-t-scope-knee] (cited 2023 Jul 8).
Article Details
Abstract views: 263

