INFORMATION TECHNOLOGY IMPLEMENTATIONS AND LIMITATIONS IN MEDICAL RESEARCH

Marcin Maciejewski

m.maciejewski@pollub.pl
Politechnika Lubelska, Instytut Elektroniki i Technik Informacyjnych (Poland)

Abstract

The article presents an overview of common uses of information technology in medicine and medical diagnostics, also pointing out major obstacles in the process of introducing information technology in the fields above . Information technology tools widely used in medicine include but are not limited to databases, decision algorithms and data processing and mining methods. Major obstacles include heterogeneity of medical data, their complexity and free text descriptions of procedures, diagnoses and interpretations of test results.


Keywords:

data mining, medical data, data processing, heterogenity

Branson A., Hauer T., McClatchey R., Rouglin D., Shamdasani J.: A Data Model for Integrating Heterogeneous Medical Data in the Health-e-Child Project CCS Research Centre Stud Health Technol Inform, 2008.
  Google Scholar

Ciosa K.J., Moore G.W.: Uniqueness of medical data mining, Artificial Intelligence in Medicine 26, 2002, 1–24.
  Google Scholar

Hariz M., Adnan M., Husain W.: Data Mining for Medical Systems: A Review, Proceedings International Conference on Advances in Computer and Information Technology - ACIT 2012.
  Google Scholar

Healey M.P., Jacobson J.E.: Common Medical Diagnoses: An Algorithmic Approach, Saunders, 2006.
  Google Scholar

Miller M, Rabczenko D, Wojtyniak B.: Epidemiologia w zdrowiu publicznym, Wydawnictwo Lekarskie PZWL, 1/2010.
  Google Scholar

Mitchell T.M.: Machine Learning McGraw-Hill, 2011.
  Google Scholar

Morris F. C.: Computer Medical Databases The First Six Decades (1950–2010), Springer, 2011.
  Google Scholar

Nguyen H.P., Kreinovich V.: Fuzzy Logic and its Applications in Medicine
  Google Scholar

Phuong N. H., Kreinovich V.: Fuzzy logic and its applications in medicine. Int. J. Med. Inform., 2001.
  Google Scholar

Salski A., Holsten B., Trepel M.: A fuzzy approach to ecological modelling and data analysis, Handbook of Ecological Modelling and Informatics, Wit Press, 01/2009.
  Google Scholar

Shortliffe, E.H., Cimino J. J.: Biomedical Informatics Computer Applications in Health Care and Biomedicine, Springer, 2014.
  Google Scholar

Tarski A.: Introduction to Logic and to theMethodology of Deductive Sciences,Courier Dover Publications, Oxford University Press, 1994.
  Google Scholar

Wojtusiak J.: Semantic Data Types in Machine Learning from Healthcare Data, Proceedings of the International Conference on Machine Learning and Applications (ICMLA), Florida, 2012.
  Google Scholar

Zadeh L.A.: Fuzzy sets, Information and Control, 1965.
  Google Scholar

http://guidetodatamining.com/
  Google Scholar

http://www.cdisc.org/
  Google Scholar

http://www.cdisc.org/system/files/all/article/image/jpeg/newdataset.jpg
  Google Scholar

http://www.hl7.org/
  Google Scholar

http://i.msdn.microsoft.com/dynimg/IC117351.gif
  Google Scholar

http://www.openehr.org/
  Google Scholar

http://www.openehr.org/files/what_is_openehr/multi_level_modelling.png
  Google Scholar

http://www.who.int/classifications/icd/en/
  Google Scholar


Published
2019-12-27

Cited by

Maciejewski, M. (2019). INFORMATION TECHNOLOGY IMPLEMENTATIONS AND LIMITATIONS IN MEDICAL RESEARCH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 5(1), 66–72. https://doi.org/10.5604/20830157.1148052

Authors

Marcin Maciejewski 
m.maciejewski@pollub.pl
Politechnika Lubelska, Instytut Elektroniki i Technik Informacyjnych Poland

Statistics

Abstract views: 223
PDF downloads: 85