DETERMINING STUDENT'S ONLINE ACADEMIC PERFORMANCE USING MACHINE LEARNING TECHNIQUES
Article Sidebar
Open full text
Issue Vol. 14 No. 3 (2024)
-
THEORETICAL APPROACH FOR DETERMINING AN EMISSIVITY OF SOLID MATERIALS AND ITS COMPARISON WITH EXPERIMENTAL STUDIES ON THE EXAMPLE OF 316L POWDER STEEL
Oleksandr Vasilevskyi, Michael Cullinan, Jared Allison5-8
-
INFORMATION SYSTEM FOR DETECTION OF PARAMETERS OF DANGEROUS INDUSTRIAL FACILITIES BASED ON GEOINFORMATION TECHNOLOGIES
Oleg Barabash, Olha Svynchuk, Olena Bandurka, Oleh Ilin9-14
-
PERIODIC ATEB-FUNCTIONS AND THE VAN DER POL METHOD FOR CONSTRUCTING SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR OSCILLATIONS MODELS OF ELASTIC BODIES
Yaroslav Romanchuk, Mariia Sokil, Leonid Polishchuk15-20
-
UTILIZING GAUSSIAN PROCESS REGRESSION FOR NONLINEAR MAGNETIC SEPARATION PROCESS IDENTIFICATION
Oleksandr Volovetskyi21-28
-
TWO-DIMENSIONAL HYPERCHAOTIC MAP FOR CHAOTIC OSCILLATIONS
Oleh Krulikovskyi, Serhii Haliuk, Ihor Safronov, Valentyn Lesinskyi29-34
-
NEUROBIOLOGICAL PROPERTIES OF THE STRUCTURE OF THE PARALLEL-HIERARCHICAL NETWORK AND ITS USAGE FOR PATTERN RECOGNITION
Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Anatolii Horban, Oleksandr Sobovyi, Liudmyla Pogrebniak, Nelia Burlaka, Yurii Didenko, Maksym Kozyr, Ainur Kozbakova35-38
-
MODELS OF FALSE AND CORRECT DETECTION OF INFORMATION LEAKAGE SIGNALS FROM MONITOR SCREENS BY A SPECIALIZED TECHNICAL MEANS OF ENEMY INTELLIGENCE
Dmytro Yevgrafov, Yurii Yaremchuk39-42
-
STREAMLINING DIGITAL CORRELATION-INTERFEROMETRIC DIRECTION FINDING WITH SPATIAL ANALYTICAL SIGNAL
Nurzhigit Smailov, Vitaliy Tsyporenko, Akezhan Sabibolda, Valentyn Tsyporenko, Askar Abdykadyrov, Assem Kabdoldina, Zhandos Dosbayev, Zhomart Ualiyev, Rashida Kadyrova43-48
-
MATHEMATICAL MODEL AND STRUCTURE OF A NEURAL NETWORK FOR DETECTION OF CYBER ATTACKS ON INFORMATION AND COMMUNICATION SYSTEMS
Lubov Zahoruiko, Tetiana Martianova, Mohammad Al-Hiari, Lyudmyla Polovenko, Maiia Kovalchuk, Svitlana Merinova, Volodymyr Shakhov, Bakhyt Yeraliyeva49-55
-
A METHOD FOR FORMING A TRUNCATED POSITIONAL CODE SYSTEM FOR TRANSFORMED VIDEO IMAGES
Volodymyr Barannik, Roman Onyshchenko, Gennady Pris, Mykhailo Babenko, Valeriy Barannik, Vitalii Shmakov, Ivan Pantas56-60
-
Z-NUMBERS BASED MODELING OF GROUP DECISION MAKING FOR SUPPLIER SELECTION IN MANUFACTURING SYSTEMS
Kamala Aliyeva61-67
-
OPTIMIZATION OF AN INTELLIGENT CONTROLLED BRIDGELESS POSITIVE LUO CONVERTER FOR LOW-CAPACITY ELECTRIC VEHICLES
Rangaswamy Balamurugan, Ramasamy Nithya68-70
-
MODIFIED VGG16 FOR ACCURATE BRAIN TUMOR DETECTION IN MRI IMAGERY
Katuri Rama Krishna, Mohammad Arbaaz, Surya Naga Chandra Dhanekula, Yagna Mithra Vallabhaneni71-75
-
IOT BASED ECG: HYBRID CNN-BILSTM APPROACH FOR MYOCARDIAL INFARCTION CLASSIFICATION
Abdelmalek Makhir, My Hachem El Yousfi Alaoui, Larbi Bellarbi, Abdelilah Jilbab76-80
-
INTEGRATED HYBRID MODEL FOR LUNG DISEASE DETECTION THROUGH DEEP LEARNING
Budati Jaya Lakshmi Narayana, Gopireddy Krishna Teja Reddy, Sujana Sri Kosaraju, Sirigiri Rajeev Choudhary81-85
-
POLARIZATION-CORRELATION MAPPING OF MICROSCOPIC IMAGES OF BIOLOGICAL TISSUES OF DIFFERENT MORPHOLOGICAL STRUCTURE
Nataliia Kozan, Oleksandr Saleha, Olexander Dubolazov, Yuriy Ushenko, Iryna Soltys, Oleksandr Ushenko, Oleksandr Olar, Victor Paliy, Saule Smailova86-90
-
REAL-TIME DETECTION AND CLASSIFICATION OF FISH IN UNDERWATER ENVIRONMENT USING YOLOV5: A COMPARATIVE STUDY OF DEEP LEARNING ARCHITECTURES
Rizki Multajam, Ahmad Faisal Mohamad Ayob, W.S. Mada Sanjaya, Aceng Sambas, Volodymyr Rusyn, Andrii Samila91-95
-
WEED DETECTION ON CARROTS USING CONVOLUTIONAL NEURAL NETWORK AND INTERNET OF THING BASED SMARTPHONE
Lintang Patria, Aceng Sambas, Ibrahim Mohammed Sulaiman, Mohamed Afendee Mohamed, Volodymyr Rusyn, Andrii Samila96-100
-
ANALYSIS AND STUDY OF ROLLING PARAMETERS OF COILS ON AN INCLINED PLANE
Larysa Gumeniuk, Lesya Fedik, Volodymyr Didukh, Pavlo Humeniuk101-104
-
ANALYSIS OF CONTENT RECOMMENDATION METHODS IN INFORMATION SERVICES
Oleksandr Necheporuk, Svitlana Vashchenko, Nataliia Fedotova, Iryna Baranova, Yaroslava Dehtiarenko105-108
-
DETERMINING STUDENT'S ONLINE ACADEMIC PERFORMANCE USING MACHINE LEARNING TECHNIQUES
Atika Islam, Faisal Bukhari, Muhammad Awais Sattar, Ayesha Kashif109-117
-
ENTROPY BASED EVALUATION OF THE IMPACT OF EDUCATION ON ECONOMIC DEVELOPMENT
Yelyzaveta Mykhailova, Nataliia Savina, Volodymyr Lytvynenko, Stanislav Mykhailov118-122
-
INFORMATION SYSTEM FOR ASSESSING THE LEVEL OF HUMAN CAPITAL MANAGEMENT
Anzhelika Azarova, Larysa Azarova, Iurii Krak, Olga Ruzakova, Veronika Azarova123-128
-
DECENTRALIZED PLATFORM FOR FINANCING CHARITY PROJECTS
Iryna Segeda, Vladyslav Kotsiuba, Oleksii Shushura, Viktoriia Bokovets, Natalia Koval, Aliya Kalizhanova129-134
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
Predicting student's academic performance during online learning has been considered a major task during the pandemic period. During the online mode of learning, academic activities have been affected in such a way that the management of educational institutions has planned to design support systems for predicting the student's performance to reduce the dropout ratio of the students and bring improvement in academic activities. During COVID-19, the main challenge is maintaining student's grades by predicting their academic performance using different techniques such as Education Data Mining and Learning Analytics. Different features have been identified related to the teaching mechanisms in online learning, which have a great impact on the improvement of academic performance. A high-quality dataset helps us to generate productive results, which in turn helps us to make effective decisions for promoting high-quality education. In this research, five prediction models for predicting academic performance have been proposed by collecting an imbalanced dataset of 350 students from the same computer science domain. After applying pre-processing techniques for cleaning the data, machine learning models have been applied, including K-Nearest Neighbor Classifier, Decision Tree, Random Forest, Support Vector Classifier, and Gaussian Naive Bayes. Results have been predicted for an imbalanced and balanced dataset after feature selection. Support Vector classifier has produced the best results in a balanced dataset with selected features by giving an accuracy of 96.89%.
Keywords:
References
[1] Akour I. et al.: Using machine learning algorithms to predict people’s intention to use mobile learning platforms during the COVID-19 pandemic: machine learning approach. JMIR Medical Education 7, 2021, e24032. DOI: https://doi.org/10.2196/24032
[2] Altabrawee H., Ali O. A. J., Ajmi S. Q.: Predicting students’ performance using machine learning techniques. Journal of University of Babylon for pure and applied sciences 27, 2019, 194–205. DOI: https://doi.org/10.29196/jubpas.v27i1.2108
[3] Aman F. et al.: A predictive model for predicting students academic performance. 10th International Conference on Information, Intelligence, Systems and Applications – IISA. IEEE, 2019, 1–4. DOI: https://doi.org/10.1109/IISA.2019.8900760
[4] Arnold K. E., Pistilli M. D.: Course signals at Purdue: Using learning analytics to increase student success. 2nd International Conference on Learning Analytics and Knowledge, 2012, 267–270. DOI: https://doi.org/10.1145/2330601.2330666
[5] Baraniuk R.: Open education: New opportunities for signal processing. IEEE International Conference on Acoustics, Speech and Signal Processing – ICASSP, 2015.
[6] Bhardwaj B. K., Pal S.: Data Mining: A prediction for performance improvement using classify cation. arXiv preprint arXiv:1201.3418, 2012.
[7] Bhutto E. S. et al.: Predicting students’ academic performance through supervised machine learning. International Conference on Information Science and Communication Technology – ICISCT. IEEE, 2020, 1–6. DOI: https://doi.org/10.1109/ICISCT49550.2020.9080033
[8] Borge N.: Artificial intelligence to improve education/learning challenges. International Journal of Advanced Enginering & Innovative Technology – IJAEIT 2, 2016, 10–13.
[9] Chaudhury P. et al.: Enhancing the capabilities of student result prediction system. Second International Conference on Information and Communication Technology for Competitive Strategies, 2016, 1–6. DOI: https://doi.org/10.1145/2905055.2905150
[10] Clow D.: An overview of learning analytics. Teaching in Higher Education 2013, 18, 683–695. DOI: https://doi.org/10.1080/13562517.2013.827653
[11] Ever Y. K., Dimililer K.: The effectiveness of a new classification system in higher education as a new e-learning tool. Quality & Quantity 52, 2018, 573–582. DOI: https://doi.org/10.1007/s11135-017-0636-y
[12] Gray G., McGuinness C., Owende P.: An application of classification models to predict learner progression in tertiary education. IEEE International Advance Computing Conference – IACC. IEEE, 2014, 549–554. DOI: https://doi.org/10.1109/IAdCC.2014.6779384
[13] Huang S., Fang N.: Work in progress: Early prediction of students’ academic performance in an introductory engineering course through different mathematical modeling techniques. Frontiers in Education Conference Proceedings. IEEE, 2012, 1–2. DOI: https://doi.org/10.1109/FIE.2012.6462242
[14] Kolo D. K., Adepoju S. A., Alhassan J. K.: A decision tree approach for predicting students academic performance. I.J. Education and Management Engineering 5, 2015, 12–19. DOI: https://doi.org/10.5815/ijeme.2015.05.02
[15] Kotsiantis S. B.: Use of machine learning techniques for educational proposes: a decision support system for forecasting students’ grades. Artificial Intelligence Review 37, 2012, 331–344. DOI: https://doi.org/10.1007/s10462-011-9234-x
[16] Mueen A., Zafar B., Manzoor U.: Modeling and Predicting Students’ Academic Performance Using Data Mining Techniques. International Journal of Modern Education & Computer Science 8, 2016. DOI: https://doi.org/10.5815/ijmecs.2016.11.05
[17] Osmanbegovic E., Suljic M.: Data mining approach for predicting student performance. Economic Review: Journal of Economics and Business 10, 2012, 3–12.
[18] Oyedeji A. O. et al.: Analysis and prediction of student academic performance using machine learning. JITCE (Journal of Information Technology and Computer Engineering) 4, 2020, 10–15. DOI: https://doi.org/10.25077/jitce.4.01.10-15.2020
[19] Rachburee N., Punlumjeak W.: A comparison of feature selection approach between greedy, IG-ratio, Chi-square, and mRMR in educational mining. 7th International Conference on Information Technology and Electrical Engineering – ICITEE. IEEE, 2015, 420–424. DOI: https://doi.org/10.1109/ICITEED.2015.7408983
[20] Romero C., Ventura S.: Educational data mining: A survey from 1995 to 2005. Expert systems with applications 33, 2007, 135–146. DOI: https://doi.org/10.1016/j.eswa.2006.04.005
[21] Said M. A., Idris M., Hussain S.: Relationship between Social Behaviour and Academic Performance of Students at Secondary Level in Khyber Pakhtunkhwa. Pakistan Journal of Distance and Online Learning 4, 2018, 153–170.
[22] Sekeroglu B., Dimililer K., Tuncal K.: Student performance prediction and classification using machine learning algorithms. 8th International Conference on Educational and Information Technology, 2019, 7–11. DOI: https://doi.org/10.1145/3318396.3318419
[23] Singh A., Halgamuge M. N., Lakshmiganthan R.: Impact of different data types on classifier performance of random forest, naive bayes, and k-nearest neighbors algorithms. International Journal of Advanced Computer Science and Applications 8, 2017. DOI: https://doi.org/10.14569/IJACSA.2017.081201
[24] Thammasiri D. et al.: A critical assessment of imbalanced class distribution problem: The case of predicting freshmen student attrition. Expert Systems with Applications 41, 2014, 321–330. DOI: https://doi.org/10.1016/j.eswa.2013.07.046
[25] Wolff A. et al.: Developing predictive models for early detection of at-risk students on distance learning modules. LAK Workshops, 2014.
Article Details
Abstract views: 321

