Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 4
2025-12-20 27
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
In alcohol production from starch-containing raw materials, it is essential to know the viscosity of the resulting solution. The main drawback of control systems in the solution preparation process is the lack of viscosity monitoring. This prevents the use of processing modes that would ensure efficient execution of the subsequent thermoenzymatic treatment of the solution. This work is dedicated to examining the qualitative impact of the timing of enzyme addition on the change in solution viscosity, aiming to improve the quality of the process control during its preparation. The study was conducted in the free multi-agent programming environment NetLogo, which is used for modeling complex systems evolving over time.
Keywords:
References
[1] Casey G. P., Ingledew W. M.: Ethanol tolerance in yeasts. Crit. Rev. in Microbiology 13(3), 1986, 219–280 [https://doi.org/10.3109/10408418609108739]. DOI: https://doi.org/10.3109/10408418609108739
[2] Drevetskiy V. V., Vorobyuk S. P., Kutya V. M.: Control of values of solid residue using viscosity of the grainflour mixture. Bulletin of the Engineering Academy of Ukraine 1, 2012, 180–182.
[3] Folly R. et al.: control of feed load changes in alcohol fermentation. Brazilian Journal of Chemical Engineering 14(4), 1997 [https://doi.org/10.1590/S0104-66321997000400012]. DOI: https://doi.org/10.1590/S0104-66321997000400012
[4] Galbe M. Zacchi G.: Simulation of ethanol production processes based on enzymatic hydrolysis of woody biomass. Comput. Chem. Eng, 1994 [https://doi.org/10.1016/0098-1354(94)80112-6]. DOI: https://doi.org/10.1016/0098-1354(94)80112-6
[5] Jarovenko V. L.: Guide to the production of alcohol. Raw materials, technology, and chemical control. Light and Agro-Food Industry, 1981.
[6] Lee J., Singh V., Eckhoff S. R.: Effects of Processing Conditions on the Viscosity of Corn Mash During Ethanol Production. Transactions of the ASABE 58(5), 2015, 1387–1393.
[7] Lotysh V., Gumeniuk L., Humeniuk P.: Comparison of the effectiveness of time series analysis methods: SMA, WMA, EMA, EWMA, and Kalman filter for data analysis. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 13(3), 2023, 71–74 [https://doi.org/10.35784/iapgos.3652]. DOI: https://doi.org/10.35784/iapgos.3652
[8] Marinchenko V. et al.: Technology of alcohol. Vinnytsia, 2003.
[9] Markina L. et al.: Optimization of Ethanol Production Using State-Space Modeling and Optimal Control Technology. 13th International Conference on Dependable Systems, Services and Technologies (DESSERT’2023), Greece, 2023, 1–7 [https://doi.org/10.1109/DESSERT61349.2023.10416529]. DOI: https://doi.org/10.1109/DESSERT61349.2023.10416529
[10] Melnik Y. R. et al.: Thinning of rye batter using the enzyme preparation shearzyme 500L. Chemistry, Technology and Application of Substances 7(1), 2024, 171–176 [https://doi.org/10.23939/ctas2024.01.171]. DOI: https://doi.org/10.23939/ctas2024.01.171
[11] Palchevsky B., Markina L.: Intelligent control system for the process of preparation of the batch and its water-heat treatment in the production of alcohol. Scientific Notes 75/2023, 22–26 [https://doi.org/10.36910/775.24153966.2023.75.3]. DOI: https://doi.org/10.36910/775.24153966.2023.75.3
[12] Palchevsky B., Markina L.: Optimization of the process of controlling the preparation of the batch in alcohol production. Perspective Technologies And Devices 20, 2022, 82–87 [https://doi.org/10.36910/6775-2313-5352-2022-20-13]. DOI: https://doi.org/10.36910/6775-2313-5352-2022-20-13
[13] Peng Z., Jin Y., Du J.: Enzymatic Properties of endo-1,4-β-xylanase from Wheat Malt. Protein and peptide letters 26(5), 2019, 332–333 [https://doi.org/10.2174/0929866526666190228144851]. DOI: https://doi.org/10.2174/0929866526666190228144851
[14] Rivera E. et al.: Kinetic modeling and parameter estimation in a tower bioreactor for bioethanol production. Applied Biochemistry and Biotechnology 148, 2008, 163–173. DOI: https://doi.org/10.1007/s12010-007-8062-6
[15] Vorobyuk S., Drevetskyi V.: Process automation of continuous quality control of mixture preparation at the distillery. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 4(4), 2014, 59–61 [https://doi.org/10.5604/20830157.1130194]. DOI: https://doi.org/10.5604/20830157.1130194
[16] http://ccl.northwestern.edu/netlogo (available: 15.05.2024).
[17] https://drive.google.com/file/d/1M-tZZCoC3jZ8Ekfdvq7eldgwzockICfH/ view?%20pli=1 (available: 25.05.2024).
Article Details
Abstract views: 240
Larysa Gumeniuk, Lutsk National Technical University
Lutsk National Technical University,
Ph.D.Eng. Associate Professor, Department of Automation and Computer – Integrated Technologies.
Research interests: Modeling of reliability and safety of the automated control systems.

