COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS
Volodymyr Lotysh
Lutsk National Technical University (Ukraine)
http://orcid.org/0000-0003-0899-8015
Larysa Gumeniuk
lorapost@gmail.comLutsk National Technical University (Ukraine)
https://orcid.org/0000-0002-7678-7060
Pavlo Humeniuk
Lutsk National Technical University (Ukraine)
http://orcid.org/0000-0002-6251-8548
Abstract
In time series analysis, signal processing, and financial analysis, simple moving average (SMA), weighted moving average (WMA), exponential moving average (EMA), exponential weighted moving average (EWMA), and Kalman filter are widely used methods. Each method has its own strengths and weaknesses, and the choice of method depends on the specific application and data characteristics. It is important for researchers and practitioners to understand the properties and limitations of these methods in order to make informed decisions when analyzing time series data. This study investigates the effectiveness of time series analysis methods using data modeled with a known exponential function with overlaid random noise. This approach allows for control of the underlying trend in the data while introducing the variability characteristic of real-world data. The relationships were written using scripts for the construction of dependencies, and graphical interpretation of the results is provided.
Keywords:
data analysis, modeling, moving average, Kalman filterReferences
Brockwell P. J., Davis R. A.: Introduction to time series and forecasting. Springer, 2016.
DOI: https://doi.org/10.1007/978-3-319-29854-2
Google Scholar
Gardner E. S.: Exponential smoothing: The state of the art. Journal of forecasting 4(1), 1985, 1–28.
DOI: https://doi.org/10.1002/for.3980040103
Google Scholar
Hyndman R. J., Athanasopoulos G.: Forecasting: principles and practice. Otexts, 2018.
Google Scholar
Lewis C. D.: Industrial and business forecasting methods. Butterworth, Kent 1982.
Google Scholar
Ruppert D., Wand M. P., Carroll R. J.: Semiparametric regression. Cambridge University Press, 2018.
Google Scholar
Terry J. W., Parramore K.: Quantitative Methods for Finance. International Thomson Business Press, 1997.
Google Scholar
Wynn R. F., Holden K.: An introduction to applied econometric analysis. Macmillan, London 1974.
DOI: https://doi.org/10.1007/978-1-349-15548-4
Google Scholar
Authors
Volodymyr LotyshLutsk National Technical University Ukraine
http://orcid.org/0000-0003-0899-8015
Authors
Larysa Gumeniuklorapost@gmail.com
Lutsk National Technical University Ukraine
https://orcid.org/0000-0002-7678-7060
Authors
Pavlo HumeniukLutsk National Technical University Ukraine
http://orcid.org/0000-0002-6251-8548
Statistics
Abstract views: 402PDF downloads: 282
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Natalia Grigorieva, Viktor Shabaykovich, Larysa Gumeniuk, Pavlo Humeniuk, Lubov Dobrovolska, Dmitry Sobchuk, WAYS TO PRODUCE RENEWABLE ENERGY FROM CARBON DIOXIDE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 1 (2020)
- Larysa Gumeniuk, Vladimir Lotysh, Pavlo Gumeniuk, TOOLS FOR COMPARING THE RESULTS OF THE WORK OF SORTING ALGORITHMS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 2 (2018)
- Larysa Gumeniuk, Lesya Fedik, Volodymyr Didukh, Pavlo Humeniuk, ANALYSIS AND STUDY OF ROLLING PARAMETERS OF COILS ON AN INCLINED PLANE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 3 (2024)