COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS

Volodymyr Lotysh


Lutsk National Technical University (Ukraine)
http://orcid.org/0000-0003-0899-8015

Larysa Gumeniuk

lorapost@gmail.com
Lutsk National Technical University (Ukraine)
https://orcid.org/0000-0002-7678-7060

Pavlo Humeniuk


Lutsk National Technical University (Ukraine)
http://orcid.org/0000-0002-6251-8548

Abstract

In time series analysis, signal processing, and financial analysis, simple moving average (SMA), weighted moving average (WMA), exponential moving average (EMA), exponential weighted moving average (EWMA), and Kalman filter are widely used methods. Each method has its own strengths and weaknesses, and the choice of method depends on the specific application and data characteristics. It is important for researchers and practitioners to understand the properties and limitations of these methods in order to make informed decisions when analyzing time series data. This study investigates the effectiveness of time series analysis methods using data modeled with a known exponential function with overlaid random noise. This approach allows for control of the underlying trend in the data while introducing the variability characteristic of real-world data. The relationships were written using scripts for the construction of dependencies, and graphical interpretation of the results is provided.


Keywords:

data analysis, modeling, moving average, Kalman filter

Brockwell P. J., Davis R. A.: Introduction to time series and forecasting. Springer, 2016.
DOI: https://doi.org/10.1007/978-3-319-29854-2   Google Scholar

Gardner E. S.: Exponential smoothing: The state of the art. Journal of forecasting 4(1), 1985, 1–28.
DOI: https://doi.org/10.1002/for.3980040103   Google Scholar

Hyndman R. J., Athanasopoulos G.: Forecasting: principles and practice. Otexts, 2018.
  Google Scholar

Lewis C. D.: Industrial and business forecasting methods. Butterworth, Kent 1982.
  Google Scholar

Ruppert D., Wand M. P., Carroll R. J.: Semiparametric regression. Cambridge University Press, 2018.
  Google Scholar

Terry J. W., Parramore K.: Quantitative Methods for Finance. International Thomson Business Press, 1997.
  Google Scholar

Wynn R. F., Holden K.: An introduction to applied econometric analysis. Macmillan, London 1974.
DOI: https://doi.org/10.1007/978-1-349-15548-4   Google Scholar

Download


Published
2023-09-30

Cited by

Lotysh, V., Gumeniuk, L., & Humeniuk, P. (2023). COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(3), 71–74. https://doi.org/10.35784/iapgos.3652

Authors

Volodymyr Lotysh 

Lutsk National Technical University Ukraine
http://orcid.org/0000-0003-0899-8015

Authors

Larysa Gumeniuk 
lorapost@gmail.com
Lutsk National Technical University Ukraine
https://orcid.org/0000-0002-7678-7060

Authors

Pavlo Humeniuk 

Lutsk National Technical University Ukraine
http://orcid.org/0000-0002-6251-8548

Statistics

Abstract views: 402
PDF downloads: 282