PULVERIZED COAL COMBUSTION ADVANCED CONTROL TECHNIQUES
Article Sidebar
Open full text
Issue Vol. 9 No. 2 (2019)
-
OPPORTUNITIES FOR THE OUT OF THE 1550 nm WINDOW TRANSMISSION
Jarosław Piotr Turkiewicz4-7
-
TOWARDS A DIFFERENT WORLD – ON THE POTENTIAL OF THE INTERNET OF EVERYTHING
Mirosław Płaza, Radosław Belka, Zbigniew Szcześniak8-11
-
USE OF THERMAL IMAGING IN CONSTRUCTION
Danuta Proszak-Miąsik12-15
-
THE CONSTRUCTION OF THE FEATURE VECTOR IN THE DIAGNOSIS OF SARCOIDOSIS BASED ON THE FRACTAL ANALYSIS OF CT CHEST IMAGES
Zbigniew Omiotek, Paweł Prokop16-23
-
СROSS PLATFORM TOOLS FOR MODELING AND RECOGNITION OF THE FINGERSPELLING ALPHABET OF GESTURE LANGUAGE
Serhii Kondratiuk, Iurii Krak, Waldemar Wójcik24-27
-
RESEARCH OF PARAMETERS OF FIBER-OPTICAL MEASURING SYSTEMS
Waldemar Wójcik, Aliya Kalizhanova, Gulzhan Kashaganova, Ainur Kozbakova, Zhalau Aitkulov, Zhassulan Orazbekov28-31
-
DETERMINATION OF THE PROBABILITY FACTOR OF PARTICLES MOVEMENT IN A GAS-DISPERSED TURBULENT FLOW
Saltanat Adikanova, Waldemar Wójcik, Natalya Denissova, Yerzhan Malgazhdarov, Ainagul Kadyrova32-35
-
DEVELOPMENT OF WIND ENERGY COMPLEX AUTOMATION SYSTEM
Kuanysh Mussilimov, Akhmet Ibraev, Waldemar Wójcik36-40
-
PULVERIZED COAL COMBUSTION ADVANCED CONTROL TECHNIQUES
Konrad Gromaszek41-45
-
THE PROSPECTS FOR THE USE OF INTELLIGENT SYSTEMS IN THE PROCESSES OF GRAVITATIONAL ENRICHMENT
Batyrbek Aitbaevich Suleimenov, Yelena Kulakova46-49
-
MODELING OF PROCESSES IN CRUDE OIL TREATED WITH LOW-FREQUENCY SOUNDS
Yelena Blinayeva, Saule Smailova50-53
-
INFORMATION TECHNOLOGIES FOR THE ANALYSIS OF THE STRUCTURAL CHANGES IN THE PROCESS OF IDIOPATHIC MACULAR RUPTURE DIAGNOSTICS
Sergii Pavlov, Yosyp Saldan, Dina Vovkotrub-Lyahovska, Yuliia Saldan, Valentina Vassilenko, Yuliia Yakusheva54-59
-
GENERATORS OF ONE-TIME TWO-FACTOR AUTHENTICATION PASSWORDS
Olga Ussatova, Saule Nyssanbayeva60-63
-
MATHEMATICAL MODELING OF THE PROCESS OF DRAWING AN OPTICAL FIBER USING THE LANGEVIN EQUATION
Aliya Tergeussizova64-67
-
MODERN MANAGEMENT OF NATIONAL COMPETITIVENESS
Nataliia Savina, Olha Romanko, Sergii Pavlov, Volodymyr Lytvynenko68-71
-
APPLICATION OF HYDRAULIC AUTOMATION EQUIPMENT FOR THE EFFICIENCY ENHANCEMENT OF THE OPERATION ELEMENTS OF THE MOBILE MACHINERY
Leonid Polishchuk, Leonid Kozlov, Yuri Burennikov, Vasil Strutinskiy, Valerii Kravchuk72-78
Archives
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
Main Article Content
DOI
Authors
Abstract
The paper describes the selected methods of adaptive control of the pulverized coal combustion process overview with various types of prognostic models. It was proposed to use a class of control methods that are relatively well established in industrial practice. The presented approach distinguishes the use of an additional source of information in the form of signals from an optical diagnostic system and models based on selected deep structures of recurrent networks. The research aim is to increase the efficiency of the combustion process in the power boiler, taking into account the EU emission standards, leading in consequence to sustainable energy and sustainable environmental engineering.
Keywords:
References
Bengio Y., Simard P., Frasconi P.: Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Trans. Neural Networks 5/1994, 157–166.
Computation N.: Long Short-term Memory. Neural Comput. 9/2016, 1735–1780.
Gromaszek K., Kotyra A., et al.: Signal Process. - Algorithms, Archit. Arrange. Appl. Conf. Proceedings SPA 3/2015, 133–136.
Hopfield J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79/1982, 2554–2558.
Kauranen P., Andersson-Engels S., Svanberg S.: Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system. Appl. Phys. B Photophysics Laser Chem. 53/1991, 260–264.
Kordylewski W., Bulewicz E., Dyjakon A., Hardy T., et al.: Spalanie i Paliwa. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2008.
Lhner R.: Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods. J. Fluid Mech. 1/2001, 375–376.
Ordys A.W., Pike A.W., Johnson M.A., Katebi R.M., Grimble M.J.: Modelling and Simulation of Power Generation Plants, Springer–Verlag, 1994.
Sepp H., Schmidhuber J.: Long short-term memory. Neural Comput. 9/1997, 1735–1780.
Tascikaraoglu A., Uzunoglu M.: A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 34/2014, 243–254.
Zhou H., Cen K., Fan J.: Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms. Int. J. Energy Res. 29/2005, 499–510.
Article Details
Abstract views: 278
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
