INCREASING THE COST-EFFECTIVENESS OF IN VITRO RESEARCH THROUGH THE USE OF TITANIUM IN THE DEVICE FOR MEASURING THE ELECTRICAL PARAMETERS OF CELLS
Dawid Zarzeczny
dawid.adrian.zarzeczny@gmail.comLublin University of Technology, Department of Electrical Engineering and Electrotechnologies (Poland)
http://orcid.org/0000-0003-2029-9962
Abstract
Currently, various methods are used to assess the biocompatibility of materials. After an in-depth and detailed review of the literature, the method used in the research was selected. As part of the experiments, a method based on the analysis of the values of electrical parameters of cell cultures measured in the presence of electrodes was used. The electrode is a structure made of a thin layer of metallization. It measures the change in resistance, impedance and capacity of a mixture of cells and the substance in which they are grown. The plate containing the electrode assembly is called the measurement matrix. Currently, commercially used test matrices are made of gold or platinum. However, their high price means that large-scale research is significantly limited. In order to increase the access to the widespread use of this method, it was decided that it was necessary to use cheaper materials, reducing the necessary costs of conducting experiments. Considering this, an attempt was made to use a different conductive material to build matrices compatible with the ECIS® Z-Theta measurement system. Their use would enable in vitro research on living cells. In the presented work, titanium was used as a material that may turn out to be an alternative to the materials currently used. Its application to the production of matrices will allow to study the influence of this metal on the behavior of cells.
Keywords:
bioimpedance, titanium, MEMS, thin filmsReferences
Ananth H., Kundapur V., Mohammed H. S., Anand M., Amarnath G. S., Mankar S.: A review on biomaterials in dental implantology. International Journal of Biomedical Science 11(3), 2015, 113–120.
Google Scholar
Applied BioPhysics, Inc., Product Guide, [https://www.biophysics.com/whatIsECIS.php] (available: 26.11.2021).
Google Scholar
Gangadoo S., Chapman J.: Emerging biomaterials and strategies for medical applications: A review. Materials Technology 30, 2015, B3–B7 [http://doi.org/10.1179/1753555714Y.0000000206].
DOI: https://doi.org/10.1179/1753555714Y.0000000206
Google Scholar
Giaever I., Keese C. R.: Electric Cell-Substrate Impedance Sensing and Cancer Metastasis. Springer 17, 2012, 1–19 [http://doi.org/10.1007/978-94-007-4927-6_1].
DOI: https://doi.org/10.1007/978-94-007-4927-6_1
Google Scholar
Jiang G.: Design challenges of implantable pressure monitoring system. Frontiers in Neuroscience 4, 2010, 1–4
Google Scholar
[http://doi.org/10.3389/neuro.20.002.2010].
DOI: https://doi.org/10.3389/neuro.20.002.2010
Google Scholar
Kociubiński A., Zarzeczny D., Prendecka M., Pigoń D., Małecka-Massalska T.: Nichrome Capacitors on Polycarbonate Substrate for Monitoring Cell Culture Using Impedance Sensing Technique. Archives of Metallurgy and Materials 65, 2020, 493–496 [http://doi.org/10.24425/amm.2020.131752].
Google Scholar
Kociubiński A., Zarzeczny D., Szypulski M.: Kondensatory grzebieniowe z miedzi do monitorowania funkcji życiowych komórek hodowlanych. Przegląd Elektrotechniczny 1, 2018, 61–63 [http://doi.org/10.15199/48.2018.09.15].
DOI: https://doi.org/10.15199/48.2018.09.15
Google Scholar
Kociubiński A., Zarzeczny D.: Nickel comb capacitors for real-time monitoring of cancer cell cultures. Przegląd Elektrotechniczny 9, 2020, 149–152 [http://doi.org/10.15199/48.2020.09.31].
DOI: https://doi.org/10.15199/48.2020.09.31
Google Scholar
Kohane D. S., Langer R.: Biocompatibility and drug delivery systems. Chemical Science 1, 2010, 441–446 [http://doi.org/10.1039/c0sc00203h].
DOI: https://doi.org/10.1039/C0SC00203H
Google Scholar
Langer R., Tirrell D. A.: Designing materials for biology and medicine. Nature 428, 2004, 487–492 [http://doi.org/10.1038/nature02388].
DOI: https://doi.org/10.1038/nature02388
Google Scholar
Meng E., Sheybani R.: Insight: implantable medical devices. Lab on a Chip 14, 2014, 3233–3240 [http://doi.org/10.1039/C4LC00127C].
DOI: https://doi.org/10.1039/C4LC00127C
Google Scholar
Menzies K. L., Jones L.: The Impact of Contact Angle on the Biocompatibility of Biomaterials. Optometry and Vision Science 87, 2010, 387–399 [http://doi.org/10.1097/OPX.0b013e3181da863e].
DOI: https://doi.org/10.1097/OPX.0b013e3181da863e
Google Scholar
Onuki Y., Bhardwaj U., Papadimitrakopoulos F., Burgess D. J.: A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response. Journal of Diabetes Science and Technology 2, 2008, 1003–1015 [http://doi.org/10.1177/193229680800200610].
DOI: https://doi.org/10.1177/193229680800200610
Google Scholar
Patro S. G. K., Sahu K. K.: Normalization: A Preprocessing Stage. IARJSET 2(3), 2015, 20–22 [http://doi.org/10.17148/iarjset.2015.2305].
DOI: https://doi.org/10.17148/IARJSET.2015.2305
Google Scholar
Pennington M. R., Walle G. R. Van de, Smith G. A.: Electric Cell-Substrate Impedance Sensing To Monitor Viral Growth and Study Cellular Responses to Infection with Alphaherpesviruses in Real Time. MSphere 2, 2017, 1–12 [http://doi.org/10.1128/mSphere.00039-17].
DOI: https://doi.org/10.1128/mSphere.00039-17
Google Scholar
PN-EN ISO 10993-1:2010 Biologiczna ocena wyrobów medycznych, 2015, http://www.urpl.gov.pl/en/node/267 (available:26.11.2021).
Google Scholar
Porta M.: A Dictionary of Epidemiology (6 ed.). Oxford University Press, Oxford 2014 [http://doi.org/10.1093/acref/9780199976720.001.0001].
DOI: https://doi.org/10.1093/acref/9780199976720.001.0001
Google Scholar
Prendecka M., Małecka-Massalska T., Mlak R., Magdalena J., Osińska-Jaroszuk M., Jakubiak-Hulicz M., Leibold C., Bieser A., Wójcik W.: Effect of exopolysaccharide from Ganoderma applanatum on the electrical properties of mouse fibroblast cells line L929 culture using an electric cel-substrate impedance sensing (ECIS). Annals of Agricultural and Environmental Medicine 23, 2016, 293–297 [http://doi.org/10.5604/12321966.1203891].
DOI: https://doi.org/10.5604/12321966.1203891
Google Scholar
Rack H. J., Qazi J. I.: Titanium alloys for biomedical applications. Materials Science and Engineering C 26(8), 2006, 1269–1277 [http://doi.org/10.1016/j.msec.2005.08.032].
DOI: https://doi.org/10.1016/j.msec.2005.08.032
Google Scholar
Rozporządzenie Ministra Zdrowia z dnia 16 lutego 2016 r. w sprawie szczegółowych wymagań dotyczących planowania, prowadzenia, monitorowania i dokumentowania badania klinicznego wyrobu medycznego (Dz. U. z 2016 r. poz. 209).
Google Scholar
Saini M.: Implant biomaterials: A comprehensive review. World Journal of Clinical Cases 3, 2015, 52–57 [http://doi.org/10.12998/wjcc.v3.i1.52].
DOI: https://doi.org/10.12998/wjcc.v3.i1.52
Google Scholar
Scholten K., Meng E.: Materials for microfabricated implantable devices: a review. Lab on a Chip 15, 2015, 4256–4272 [http://doi.org/10.1039/C5LC00809C].
DOI: https://doi.org/10.1039/C5LC00809C
Google Scholar
Stolwijk J. A., Matrougui K., Renken C. W., Trebak M.: Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements. Pflügers Archiv - European Journal of Physiology 467, 2015, 2193–2218 [http://doi.org/10.1007/s00424-014-1674-0].
DOI: https://doi.org/10.1007/s00424-014-1674-0
Google Scholar
Szulcek R., Bogaard H. J., van Nieuw Amerongen G. P.: Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility. Journal of Visualized Experiments 85, 2014, 1–12 [http://doi.org/10.3791/51300].
DOI: https://doi.org/10.3791/51300
Google Scholar
Veiga C., Davim J. P., Loureiro A. J. R.: Properties and applications of titanium alloys. Reviews on Advanced Materials Science 32, 2012, 133–148.
Google Scholar
Voiculescu I., Li F., Nordin A. N.: Impedance Spectroscopy of Adherent Mammalian Cell Culture for Biochemical Applications: A Review. IEEE Sensors Journal 21, 2021, 5612–5627 [http://doi.org/10.1109/JSEN.2020.3041708].
DOI: https://doi.org/10.1109/JSEN.2020.3041708
Google Scholar
Walkowiak B.: Biomedyczne skutki kontaktu tkanki z implantem. Inżynieria Biomateriałów 7, 2004, 38–42.
Google Scholar
Wegener J., Keese C. R., Giaever I.: Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experimental Cell Research 259, 2000, 158–166 [http://doi.org/10.1006/excr.2000.4919].
DOI: https://doi.org/10.1006/excr.2000.4919
Google Scholar
Wesolowski R. A., Wesolowski A. P., Petrova R. S.: Biomaterials. In: The World of Materials. Springer International Publishing, Cham 2020, 75–78 [http://doi.org/10.1007/978-3-030-17847-5_12].
DOI: https://doi.org/10.1007/978-3-030-17847-5_12
Google Scholar
Williams D. F.: On the mechanisms of biocompatibility. Biomaterials 29, 2008, 2941–2953 [http://doi.org/10.1016/j.biomaterials.2008.04.023].
DOI: https://doi.org/10.1016/j.biomaterials.2008.04.023
Google Scholar
Xiao C., Luong J. H. T.: On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnology Progress 19, 2003, 1000–1005 [http://doi.org/10.1021/bp025733x].
DOI: https://doi.org/10.1021/bp025733x
Google Scholar
Xu Y., Xie X., Duan Y., Wang L., Cheng Z., Cheng J.: A review of impedance measurements of whole cells. Biosensors and Bioelectronics 77, 2016, 824–836 [http://doi.org/10.1016/j.bios.2015.10.027].
DOI: https://doi.org/10.1016/j.bios.2015.10.027
Google Scholar
Zarzeczny D.: Projekt i technologia kondensatorów grzebieniowych do monitorowania hodowli komórek. In: Problemy Współczesnej Inżynierii – Wybrane zagadnienia elektroniki i inżynierii biomedycznej. Politechnika Lubelska, Lublin, 2017, 155–168, [http://bc.pollub.pl/Content/13165/PDF/sneie.pdf] (available: 26.11.2021).
Google Scholar
Zarzeczny D. A.: Thin film capacitors made of various metals for impedance sensing technique. Proc. SPIE 11176, 2019, 1117654 [http://doi.org/10.1117/12.2536787].
DOI: https://doi.org/10.1117/12.2536787
Google Scholar
Authors
Dawid Zarzecznydawid.adrian.zarzeczny@gmail.com
Lublin University of Technology, Department of Electrical Engineering and Electrotechnologies Poland
http://orcid.org/0000-0003-2029-9962
Statistics
Abstract views: 291PDF downloads: 177
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Andrzej Kociubiński, Dawid Zarzeczny, Maciej Szypulski, Aleksandra Wilczyńska, Dominika Pigoń, Teresa Małecka-Massalska, Monika Prendecka, REAL-TIME MONITORING OF CELL CULTURES WITH NICKEL COMB CAPACITORS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 2 (2020)