MONITOROWANIE PRZECIĄŻEŃ NA POZIOMIE ŁĄCZA W SYSTEMACH TELEKOMUNIKACYJNYCH Z WYKORZYSTANIEM KRYTERIÓW INFORMACYJNYCH

Natalia Yakymchuk

n.yakymchuk@lntu.edu.ua
Lutsk National Technical University (Kazachstan)
http://orcid.org/0000-0002-8173-449X

Yosyp Selepyna


Lutsk National Technical University (Ukraina)
http://orcid.org/0000-0002-2421-1844

Mykola Yevsiuk


Lutsk National Technical University (Ukraina)
http://orcid.org/0000-0002-3768-8959

Stanislav Prystupa


Lutsk National Technical University (Ukraina)
http://orcid.org/0000-0003-3705-1541

Serhii Moroz


Lutsk National Technical University (Ukraina)
http://orcid.org/0000-0003-4677-5170

Abstrakt

Pomyślne funkcjonowanie sieci telekomunikacyjnych w dużej mierze zależy od skuteczności algorytmów wykrywania i ochrony przed przeciążeniami. W artykule opisano główne różnice, jakie pojawiają się przy prognozowaniu, monitorowaniu i zarządzaniu przeciążeniami na poziomie węzła i na poziomie kanału. Zaproponowano algorytm wykrywania przeciążeń poprzez estymację entropii rozkładów czasowych parametrów ruchu. Obliczono i przeanalizowano miary entropii zbiorów danych dla różnych typów rozkładów modelowych, w szczególności dla rozkładu Pareto, który optymalnie opisuje zachowanie samopodobnych procesów losowych. Do zalet tego podejścia należy skalowalność, wrażliwość na zmiany rozkładów parametrów ruchu oraz łatwość implementacji i przystępnej interpretacji.


Słowa kluczowe:

systemy telekomunikacyjne, współczynnik samopodobieństwa ruchu sieciowego, wykrywanie przeciążeń

Airehrour D., Gutierrez J. A., Ray S. K.: SecTrust-RPL: A secure trust-aware RPL routing protocol for Internet of Things. Future Generation Computer Systems 93, 2019, 860–876 [http://doi.org/10.1016/j.future.2018.03.021].
DOI: https://doi.org/10.1016/j.future.2018.03.021   Google Scholar

Alashhab A. A., Zahid M. S. M., Azim M. A., Daha M. Y., Isyaku B., Ali S.: A Survey of Low Rate DDoS Detection Techniques Based on Machine Learning in Software-Defined Networks. Symmetry 14, 2022, 1563 [http://doi.org/10.3390/sym14081563].
DOI: https://doi.org/10.3390/sym14081563   Google Scholar

Bakhovskyy P. et al.: Stages of the Virtual Technical Functions Concept Networks Development. Cagáˇnová et al. (eds.): Advances in Industrial Internet of Things, Engineering and Management. EAI/Springer Innovations in Communication and Computing, 2021, 119–135 [http://doi.org/10.1007/978-3-030-69705-1_7].
DOI: https://doi.org/10.1007/978-3-030-69705-1_7   Google Scholar

Bedin A., Chiariotti F., Kucera S., Zanella A.: Optimal Latency-Oriented Coding and Scheduling in Parallel Queuing Systems. IEEE Transactions on Communications 70(10), 2022, 6471–6488 [http://doi.org/10.1109/TCOMM.2022.3200105].
DOI: https://doi.org/10.1109/TCOMM.2022.3200105   Google Scholar

Chughtai O., Badruddin N., Rehan M., Khan A.: Congestion Detection and Alleviation in Multihop Wireless Sensor Networks. Wireless Communications and Mobile Computing 2017, 9243019 [http://doi.org/10.1155/2017/9243019].
DOI: https://doi.org/10.1155/2017/9243019   Google Scholar

Desai R. M., Patil B. P., Sharma D. P.: Learning based route management in mobile ad hoc networks. Indonesian Journal of Electrical Engineering and Computer Science 7(3), 2017, 718–723 [http://doi.org/10.11591/ijeecs.v7.i3.pp718-723].
DOI: https://doi.org/10.11591/ijeecs.v7.i3.pp718-723   Google Scholar

Desmoulins N., Fouque P.A., Onete C., Sanders O.: Pattern Matching on Encrypted Streams. ASIACRYPT 2018. Lecture Notes in Computer Science 11272, Springer, Cham. [http://doi.org/10.1007/978-3-030-03326-2_5].
DOI: https://doi.org/10.1007/978-3-030-03326-2_5   Google Scholar

Divitskyi A., Salnyk S., Hol V., Sydorkin P., Storchak A.: Development of a model of a subsystem for forecasting changes in data transmission routes in special purpose mobile radio networks. Eastern-European Journal of Enterprise Technologies 3(9), 2021, 116–125 [http://doi.org/10.15587/1729-4061.2021.235609].
DOI: https://doi.org/10.15587/1729-4061.2021.235609   Google Scholar

Dobkach L.: Analysis of methods for recognizing computer attacks. Legal informatics 1, 2020, 67–75 [http://doi.org/10/21681/1944-1404-2020-1-67-75].
  Google Scholar

Durairaj M., Hirudhaya Mary Asha J.: The Internet of Things (IoT) Routing Security – A Study. International Conference on Communication, Computing and Electronics Systems. Lecture Notes in Electrical Engineering 637. Springer, Singapore 2020 [http://doi.org/10.1007/978-981-15-2612-1_58].
DOI: https://doi.org/10.1007/978-981-15-2612-1_58   Google Scholar

Hasan N., Mishra A, Ray A. K.: Fuzzy logic based cross-layer design to improve Quality of Service in Mobile ad-hoc networks for Next-gen Cyber Physical System. Engineering Science and Technology, an International Journal 35, 2022, 101099 [http://doi.org/10.1016/j.jestch.2022.101099].
DOI: https://doi.org/10.1016/j.jestch.2022.101099   Google Scholar

Hui W., Zijian C., Bo H.: A Network Intrusion Detection System Based on Convolutional Neural Network. Journal of Intelligent & Fuzzy Systems 38(6), 2020, 7623–7637 [http://doi.org/10.3233/JIFS-179833].
DOI: https://doi.org/10.3233/JIFS-179833   Google Scholar

Mangelkar S., Dhage S., Nimkar A.: A comparative study on RPL attacks and security solutions. International Conference on Intelligent Computing and Control (I2C2), 2017, 1–6 [http://doi.org/10.1109/I2C2.2017.8321851].
DOI: https://doi.org/10.1109/I2C2.2017.8321851   Google Scholar

Moroz S., Tkachuk A., Khvyshchun M., Prystupa S., Yevsiuk M.: Methods for Ensuring Data Security in Mobile Standards. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 12(1), 2022, 4–9 [http://doi.org/10.35784/iapgos.2877].
DOI: https://doi.org/10.35784/iapgos.2877   Google Scholar

Myneni S., Chowdhary A., Huang D., Alshamrani A.: A distributed deep defense against DDoS attacks with edge computing. Computer Networks 209, 2022, 108874 [http://doi.org/10.1016/j.comnet.2022.108874].
DOI: https://doi.org/10.1016/j.comnet.2022.108874   Google Scholar

Priyadarshini R., Rabindra K.: A deep learning based intelligent framework to mitigate DDoS attack in fog environment. Journal of King Saud University – Computer and Information Sciences 34(3), 2022, 825–831 [http://doi.org/10.1016/j.jksuci.2019.04.010].
DOI: https://doi.org/10.1016/j.jksuci.2019.04.010   Google Scholar

Rafe V., Mohammady S., Cuevas E.: Using Bayesian optimization algorithm for model-based integration testing. Soft Comput 26, 2022, 3503–3525 [http://doi.org/10.1007/s00500-021-06476-9].
DOI: https://doi.org/10.1007/s00500-021-06476-9   Google Scholar

Showail A., Tahir R., Zaffar M. F., Noor M. H., Al-Khatib M.: An internet of secure and private things: A service-oriented architecture. Computers & Security 120, 2022, 102776 [http://doi.org/10.1016/j.cose.2022.102776].
DOI: https://doi.org/10.1016/j.cose.2022.102776   Google Scholar

Tkachuk A. et al.: Basic Stations Work Optimization in Cellular Communication Network. Advances in Industrial Internet of Things, Engineering and Management, EAI. Springer Innovations in Communication and Computing, 2021, 1–19 [http://doi.org/10.1007/978-3-030-69705-1_1].
DOI: https://doi.org/10.1007/978-3-030-69705-1_1   Google Scholar

Toroshanko Y., Selepyna Y., Yakymchuk N., Cherevyk V.: Control of traffic streams with the multi-rate token bucket, in International Conference on Advanced Information and Communications Technologies AICT 2019, 2019, 352–355 [http://doi.org/10.1109/AIACT.2019.8847860].
DOI: https://doi.org/10.1109/AIACT.2019.8847860   Google Scholar

Verma A., Ranga V.: Addressing Flooding Attacks in IPv6-based Low Power and Lossy Networks. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 2019, 552–557 [http://doi.org/10.1109/TENCON.2019.8929409].
DOI: https://doi.org/10.1109/TENCON.2019.8929409   Google Scholar

Yin C., Wang H., Yin X. et al.: Improved deep packet inspection in data stream detection. J Supercomput 75, 2019, 4295–4308 [http://doi.org/10.1007/s11227-018-2685-y].
DOI: https://doi.org/10.1007/s11227-018-2685-y   Google Scholar

Yungaicela-Naula N., Vargas-Rosales C., Pérez-Díaz J., Carrera D.: A flexible SDN-based framework for slow-rate DDoS attack mitigation by using deep reinforcement learning. Journal of Network and Computer Applications 205, 2022, 103444 [http://doi.org/10.1016/j.jnca.2022.103444].
DOI: https://doi.org/10.1016/j.jnca.2022.103444   Google Scholar

Zheng C., Li X., Liu Q., Sun Y., Fang B.: Hashing Incomplete and Unordered Network Streams. Advances in Digital Forensics XIV. DigitalForensics 2018. IFIP Advances in Information and Communication Technology 532. Springer, Cham. 2018 [https://doi.org/10.1007/978-3-319-99277-8_12].
DOI: https://doi.org/10.1007/978-3-319-99277-8_12   Google Scholar


Opublikowane
2022-12-30

Cited By / Share

Yakymchuk, N., Selepyna, Y., Yevsiuk, M., Prystupa, S., & Moroz, S. (2022). MONITOROWANIE PRZECIĄŻEŃ NA POZIOMIE ŁĄCZA W SYSTEMACH TELEKOMUNIKACYJNYCH Z WYKORZYSTANIEM KRYTERIÓW INFORMACYJNYCH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 12(4), 26–30. https://doi.org/10.35784/iapgos.3076

Autorzy

Natalia Yakymchuk 
n.yakymchuk@lntu.edu.ua
Lutsk National Technical University Kazachstan
http://orcid.org/0000-0002-8173-449X

Autorzy

Yosyp Selepyna 

Lutsk National Technical University Ukraina
http://orcid.org/0000-0002-2421-1844

Autorzy

Mykola Yevsiuk 

Lutsk National Technical University Ukraina
http://orcid.org/0000-0002-3768-8959

Autorzy

Stanislav Prystupa 

Lutsk National Technical University Ukraina
http://orcid.org/0000-0003-3705-1541

Autorzy

Serhii Moroz 

Lutsk National Technical University Ukraina
http://orcid.org/0000-0003-4677-5170

Statystyki

Abstract views: 131
PDF downloads: 113