ULEPSZENIE ALGORYTMU USTAWIANIA CHARAKTERYSTYKI INTERPOLACJI MONOTONOWEJ KRZYWEJ

Yuliia Kholodniak

yuliya.kholodnyak@tsatu.edu.ua
Dmytro Motornyi Tavria State Agrotechnological University, Department of Computer Sciences (Ukraina)
https://orcid.org/0000-0001-8966-9269

Yevhen Havrylenko


Dmytro Motornyi Tavria State Agrotechnological University, Department of Engineering Mechanics and Computer Design (Ukraina)
https://orcid.org/0000-0003-4501-445X

Serhii Halko


Dmytro Motornyi Tavria State Agrotechnological University, Department of Electrical Engineering and Electromechanics named after Prof. V.V. Ovharov (Ukraina)
https://orcid.org/0000-0001-7991-0311

Volodymyr Hnatushenko


Dnipro University of Technology, Department of Information Technologies and Computer Engineering (Ukraina)
https://orcid.org/0000-0003-3140-3788

Olena Suprun


Dmytro Motornyi Tavria State Agrotechnological University, Department of Foreign Languages (Ukraina)
https://orcid.org/0000-0003-4369-712X

Tatiana Volina


National University of Life and Environmental Sciences of Ukraine, Department of Descriptive Geometry, Computer Graphics and Design (Ukraina)
https://orcid.org/0000-0001-8610-2208

Oleksandr Miroshnyk


State Biotechnological University, Department of Electricity Supply and Energy Management (Ukraina)
https://orcid.org/0000-0002-6144-7573

Taras Shchur


Cyclone Manufacturing Inc, Mississauga, Ontario, Canada (Kanada)
https://orcid.org/0000-0003-0205-032X

Abstrakt

Interpolacja szeregu punktowego jest niezbędnym krokiem w rozwiązywaniu takich problemów, jak budowanie grafów opisujących zjawiska lub procesy, a także modelowanie w oparciu o zbiór punktów odniesienia układów liniowych definiujących powierzchnię. Aby uzyskać odpowiedni model, na interpolowaną krzywą stawia się następujące warunki: minimalną liczbę punktów osobliwych (punktów załamania, punktów przegięcia lub punktów skrajnej krzywizny) oraz regularną zmianę krzywizny wzdłuż krzywej. Celem pracy jest opracowanie algorytmu przypisania charakterystyk (położenia normalnych i wartości krzywizny) krzywej interpolacyjnej w punktach odniesienia, w których krzywa spełnia określone warunki. Charakterystyki krzywych nadawane są w obszarze ich możliwego położenia. Możliwości proponowanego algorytmu są badane poprzez interpolację szeregów punktów przypisanych do gałęzi paraboli. W rozwiązaniu przykładu testowego wyznaczono odchylenia normalnych i promieni krzywizny od odpowiednich charakterystyk pierwotnej krzywej. Otrzymane wartości potwierdzają poprawność zaproponowanych w pracy rozwiązań.


Słowa kluczowe:

interpolacja, krzywa monotoniczna, punkty osobliwe, normalna, środek krzywizny, ewolucja, promień krzywizny

Argyros I. K., George S.: On the convergence of Newton-like methods restricted domains. Numer. Algorithms 75(3), 2017, 553-567 [http://doi.org/10.1007/s11075-016-0211-y].
DOI: https://doi.org/10.1007/s11075-016-0211-y   Google Scholar

Bucsa S., Serban A., Balan M. C., Ionita C., Nastase G., Dobre C., Dobrovicescu A.: Exergetic Analysis of a Cryogenic Air Separation Unit. Entropy 24, 2022, 272 [http://doi.org/10.3390/e24020272].
DOI: https://doi.org/10.3390/e24020272   Google Scholar

Chekalin A. A., Reshetnikov M. K., Shpilev V. V., Borodulina S. V.: Design of Engineering Surfaces Using Quartic Parabolas. IOP Conf. Ser.: Mater. Sci. Eng. 2007, 012015 [http://doi.org/10.1088/1755-1315/221/1/012015].
DOI: https://doi.org/10.1088/1757-899X/221/1/012015   Google Scholar

Farin G., Rein G., Sapidis N., Worsey A. J.: Fairing cubic B-spline curves. Computer Aided Geom. Des. 4(1–2), 1987, 91-103 [http://doi.org/10.1016/0167-8396(87)90027-6].
DOI: https://doi.org/10.1016/0167-8396(87)90027-6   Google Scholar

Fooladi M., Foroud A. A.: Recognition and assessment of different factors which affect flicker in wind turbine. IET Renew. Power Gener. 1, 2015, 250–259 [http://doi.org/10.1049/iet-rpg.2014.0419].
DOI: https://doi.org/10.1049/iet-rpg.2014.0419   Google Scholar

Halko S., Halko K., Suprun O., Qawaqzeh M., Miroshnyk O.: Mathematical Modelling of Cogeneration Photoelectric Module Parameters for Hybrid Solar Charging Power Stations of Electric Vehicles. IEEE 3rd KhPI Week on Advanced Technology, Kharkiv, 2022, 1-6 [http://doi.org/10.1109/KhPIWeek57572.2022.9916397].
DOI: https://doi.org/10.1109/KhPIWeek57572.2022.9916397   Google Scholar

Halko S., Suprun O., Miroshnyk O.: Influence of temperature on energy performance indicators of hybrid solar panels using cylindrical cogeneration photovoltaic modules. IEEE 2nd KhPI Week on Advanced Technology, 2021, 21259624, 132–136 [http://doi.org/10.1109/KhPIWeek53812.2021.9569975].
DOI: https://doi.org/10.1109/KhPIWeek53812.2021.9569975   Google Scholar

Hashemian A., Hosseini S. F.: An integrated fitting and fairing approach for object reconstruction using smooth NURBS curves and surfaces. Comput. Math. with Appl. 76(7), 2018, 1555-1575 [http://doi.org/10.1016/j.camwa.2018.07.007].
DOI: https://doi.org/10.1016/j.camwa.2018.07.007   Google Scholar

Hashemian A., Imani B. M.: Surface fairness: a quality metric for aesthetic assessment of compliant automotive bodies. J. Eng. Des. 29(1-2), 2018, 41-64 [http://doi.org/10.1080/09544828.2018.1435853].
DOI: https://doi.org/10.1080/09544828.2018.1435853   Google Scholar

Havrylenko Y., Cortez J. I., Kholodniak Y., Alieksieieva H., Garcia G. T.: Modelling of surfaces of engineering products on the basis of array of points. Teh. Vjesn. 27(6), 2020, 2034–2043 [http://doi.org/10.17559/TV-20190720081227].
DOI: https://doi.org/10.17559/TV-20190720081227   Google Scholar

Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Bondarenko L., Suprun O., Miroshnyk O., Shchur T., Śrutek M., Gackowska M.: Interpolation with Specified Error of a Point Series Belonging to a Monotone Curve. Entropy 23(5), 2021, 493 [http://doi.org/10.3390/e23050493].
DOI: https://doi.org/10.3390/e23050493   Google Scholar

Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Miroshnyk O., Suprun O., Dereza O., Shchur T., Śrutek M.: Representation of a Monotone Curve by a Contour with Regular Change in Curvature. Entropy 23(7), 2021, 923 [http://doi.org/10.3390/e23070923].
DOI: https://doi.org/10.3390/e23070923   Google Scholar

Havrylenko Y., Kholodniak Y., Vershkov O., Naidysh A.: Development of the method for the formation of one-dimensional contours by the assigned interpolation accuracy. East.-Eur. J. Enterp. Technol. 1(4(91)), 2018, 76-82 [http://doi.org/10.15587/1729-4061.2018.123921].
DOI: https://doi.org/10.15587/1729-4061.2018.123921   Google Scholar

Hosseini S. F., Moetakef-Imani B.: Innovative approach to computer-aided design of horizontal axis wind turbine blades. J. Comput. Des. Eng. 4(2), 2017, 98-105 [http://doi.org/10.1016/j.jcde.2016.11.001].
DOI: https://doi.org/10.1016/j.jcde.2016.11.001   Google Scholar

Karaiev O., Bondarenko L., Halko S., Miroshnyk O., Vershkov O., Karaieva T., Shshur T., Findura P., Pristavka M.: Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae 24(3), 2021, 119–123 [http://doi.org/10.2478/ata-2021-0020].
DOI: https://doi.org/10.2478/ata-2021-0020   Google Scholar

Ke Y., Fan S., Zhu W., Li A., Liu F., Shi X.: Feature-based reverse modeling strategies. Comput. Aided Des. 38(5), 2006, 485-506.
DOI: https://doi.org/10.1016/j.cad.2005.12.002   Google Scholar

Lan P., Yu Z., Du L., Lu N.: Integration of non-uniform Rational B-splines geometry and rational absolute nodal coordinates formulation finite element analysis. Acta Mech. Solida Sin. 27(5), 2014, 486-495 [http://doi.org/10.1016/S0894-9166(14)60057-4].
DOI: https://doi.org/10.1016/S0894-9166(14)60057-4   Google Scholar

Lee T.-W., Park J. E.: Entropy and Turbulence Structure. Entropy 24, 2022, 11 [http://doi.org/10.3390/e24010011].
DOI: https://doi.org/10.3390/e24010011   Google Scholar

Li H.: Geometric error control in the parabola-blending linear interpolator. J. Syst. Sci. Complex. 26(5), 2013, 777-798 [http://doi.org/10.1007/s11424-013-3178-y].
DOI: https://doi.org/10.1007/s11424-013-3178-y   Google Scholar

Li W., Xu S., Zheng J., Zhao G.: Target curvature driven fairing algorithm for planar cubic B-spline curves. Computer Aided Geom. Des. 21(5), 2004, 499-513 [http://doi.org/10.1016/j.cagd.2004.03.004].
DOI: https://doi.org/10.1016/j.cagd.2004.03.004   Google Scholar

Okaniwa Sh., Nasri A., Lin H., Abbas A., Kineri Yu., Maekawa T.: Uniform B-Spline Curve Interpolation with Prescribed Tangent and Curvature Vectors. IEEE Trans. Vis. Comput. Graph. 18(9), 2016, 1474-1487 [http://doi.org/10.1109/TVCG.2011.262].
DOI: https://doi.org/10.1109/TVCG.2011.262   Google Scholar

Park H., Kim K., Lee S-C.: A method for approximate NURBS curve compatibility based on multiple curve refitting. Comput. Aided Des. 32(4), 2000, 237-252 [http://doi.org/10.1016/S0010-4485(99)00088-3].
DOI: https://doi.org/10.1016/S0010-4485(99)00088-3   Google Scholar

Pazyi V., Miroshnyk O., Moroz O., Trunova I., Savchenko O., Halko S.: Analysis of technical condition diagnostics problems and monitoring of distribution electrical network modes from smart grid platform position. IEEE KhPI Week on Advanced Technology, Kharkiv, 2020, 57-60 [http://doi.org/10.1109/KhPIWeek51551.2020.9250080].
DOI: https://doi.org/10.1109/KhPIWeek51551.2020.9250080   Google Scholar

Peng Y. H., Yin Z. W.: The algorithms for trimmed surfaces construction and tool path generation in reverse engineering. Comput. Ind. Eng. 54(3), 2008, 624-633 [http://doi.org/10.1016/j.cie.2007.09.012].
DOI: https://doi.org/10.1016/j.cie.2007.09.012   Google Scholar

Pérez-Arribas F., Pérez-Fernández, R.: A B-spline design model for propeller blades. Adv. Eng. Softw. 118, 2018, 35–44 [http://doi.org/10.1016/j.advengsoft.2018.01.005].
DOI: https://doi.org/10.1016/j.advengsoft.2018.01.005   Google Scholar

Pérez-Arribas F., Trejo-Vargas I.: Computer-aided design of horizontal axis turbine blades. Renew. Energ. 44, 2012, 252-260 [http://doi.org/10.1016/j.renene.2012.01.100].
DOI: https://doi.org/10.1016/j.renene.2012.01.100   Google Scholar

Piegl L. A., Tiller W.: Reducing control points in surface interpolation. IEEE Comput. Graph. Appl. 20(5), 2000, 6698012, 70-75 [http://doi.org/10.1109/38.865883].
DOI: https://doi.org/10.1109/38.865883   Google Scholar

Qawaqzeh M., Szafraniec A., Halko S., Miroshnyk O., Zharkov A.: Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny 96, 2020 [http://doi.org/10.15199/48.2020.11.08].
DOI: https://doi.org/10.15199/48.2020.11.08   Google Scholar

Robbin J. W., Salomon D. A.: Introduction to Differential Geometry. Springer Spektrum, Zürich 2022.
DOI: https://doi.org/10.1007/978-3-662-64340-2   Google Scholar

Shen W., Wang G., Huang F.: Direction monotonicity of a rational Bézier curve. Appl. Math. J. Chin. Univ. 31(1), 2016, 1–20 [http://doi.org/10.1007/s11766-016-3399-7].
DOI: https://doi.org/10.1007/s11766-016-3399-7   Google Scholar

Szafraniec A., Halko S., Miroshnyk O., Figura R., Zharkov A., Vershkov O.: Magnetic field parameters mathematical modelling of windelectric heater. Przeglad elektrotechniczny 97(8), 2021, 36-41 [http://doi.org/10.15199/48.2021.08.07].
DOI: https://doi.org/10.15199/48.2021.08.07   Google Scholar

Tabor S., Lezhenkin O., Halko S., Miroshnyk O., Kovalyshyn S., Vershkov O., Hryhorenko O.: Mathematical simulation of separating work tool technological process. 22nd International Scientific Conference on Progress of Mechanical Engineering Supported by Information Technology – POLSITA 2019, Czajowice, 2019, 132 [http://doi.org/10.1051/e3sconf/201913201025].
DOI: https://doi.org/10.1051/e3sconf/201913201025   Google Scholar


Opublikowane
2023-12-20

Cited By / Share

Kholodniak, Y., Havrylenko, Y., Halko, S., Hnatushenko, V., Suprun, O., Volina, T., … Shchur, T. (2023). ULEPSZENIE ALGORYTMU USTAWIANIA CHARAKTERYSTYKI INTERPOLACJI MONOTONOWEJ KRZYWEJ. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(4), 44–50. https://doi.org/10.35784/iapgos.5392

Autorzy

Yuliia Kholodniak 
yuliya.kholodnyak@tsatu.edu.ua
Dmytro Motornyi Tavria State Agrotechnological University, Department of Computer Sciences Ukraina
https://orcid.org/0000-0001-8966-9269

Autorzy

Yevhen Havrylenko 

Dmytro Motornyi Tavria State Agrotechnological University, Department of Engineering Mechanics and Computer Design Ukraina
https://orcid.org/0000-0003-4501-445X

Autorzy

Serhii Halko 

Dmytro Motornyi Tavria State Agrotechnological University, Department of Electrical Engineering and Electromechanics named after Prof. V.V. Ovharov Ukraina
https://orcid.org/0000-0001-7991-0311

Autorzy

Volodymyr Hnatushenko 

Dnipro University of Technology, Department of Information Technologies and Computer Engineering Ukraina
https://orcid.org/0000-0003-3140-3788

Autorzy

Olena Suprun 

Dmytro Motornyi Tavria State Agrotechnological University, Department of Foreign Languages Ukraina
https://orcid.org/0000-0003-4369-712X

Autorzy

Tatiana Volina 

National University of Life and Environmental Sciences of Ukraine, Department of Descriptive Geometry, Computer Graphics and Design Ukraina
https://orcid.org/0000-0001-8610-2208

Autorzy

Oleksandr Miroshnyk 

State Biotechnological University, Department of Electricity Supply and Energy Management Ukraina
https://orcid.org/0000-0002-6144-7573

Autorzy

Taras Shchur 

Cyclone Manufacturing Inc, Mississauga, Ontario, Canada Kanada
https://orcid.org/0000-0003-0205-032X

Statystyki

Abstract views: 222
PDF downloads: 120