METODA ADAPTACYJNEGO KODOWANIA STATYSTYCZNEGO Z UWZGLĘDNIENIEM CECHY STRUKTURALNE OBRAZÓW WIDEO
##plugins.themes.bootstrap3.article.sidebar##
Open full text
Numer Tom 14 Nr 4 (2024)
-
IDENTYFIKACJA SZTYWNEJ PRZESZKODY O DOWOLNYM KSZTAŁCIE OŚWIETLONEJ PŁASKĄ FALĄ AKUSTYCZNĄ PRZY UŻYCIU DANYCH Z BLISKIEGO POLA
Tomasz Rymarczyk, Jan Sikora5-9
-
OBRAZOWANIE OPARTE NA CZĘSTOTLIWOŚCI RADIOWEJ DO LOKALIZACJI WEWNĄTRZ POMIESZCZEŃ Z WYKORZYSTANIEM TECHNIK BEZPAMIĘCIOWYCH I TECHNOLOGII BEZPRZEWODOWEJ
Tammineni Shanmukha Prasanthi, Swarajya Madhuri Rayavarapu, Gottapu Sasibhushana Rao, Raj Kumar Goswami, Gottapu Santosh Kumar10-15
-
INTELIGENTNA TECHNOLOGIA DOPASOWYWANIA DLA ELASTYCZNYCH ANTEN
Olena Semenova, Andriy Semenov, Stefan Meulesteen, Natalia Kryvinska, Hanna Pastushenko16-22
-
RÓŻNICOWE MAPOWANIE MACIERZY MULLERA SKŁADNIKA POLIKRYSTALICZNEGO TKANEK BIOLOGICZNYCH NARZĄDÓW LUDZKICH
Andrei Padure, Oksana Bakun, Ivan Mikirin, Oleksandr Dubolazov, Iryna Soltys, Oleksandr Olar, Yuriy Ushenko, Oleksandr Ushenko, Irina Palii, Saule Kumargazhanova23-27
-
SELEKTOR POLARYZACJI NA FALOWODACH CZĘŚCIOWO WYPEŁNIONYCH DIELEKTRYKIEM
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova28-31
-
FUNKCJONALNIE ZINTEGROWANY PRZYRZĄD DO POMIARU TEMPERATURY
Les Hotra, Oksana Boyko, Igor Helzhynskyy, Hryhorii Barylo, Marharyta Rozhdestvenska, Halyna Lastivka32-37
-
BADANIA PROCESU KONTROLI OZONU Z WYKORZYSTANIEM CZUJNIKÓW ELEKTRONICZNYCH
Sunggat Marxuly, Askar Abdykadyrov, Katipa Chezhimbayeva, Nurzhigit Smailov38-45
-
OPTYMALIZACJA FARM WIATROWYCH: PORÓWNAWCZE ZWIĘKSZENIE WYDAJNOŚCI W WARUNKACH NISKIEJ PRĘDKOŚCI WIATRU
Mustafa Hussein Ibrahim, Muhammed A. Ibrahim, Salam Ibrahim Khather46-51
-
STEROWANIE MPPT SYSTEMU PV: ANALIZA PORÓWNAWCZA ALGORYTMÓW P&O, INCCOND, SMC I FLC
Khoukha Bouguerra, Samia Latreche, Hamza Khemlche, Mabrouk Khemliche52-62
-
15-POZIOMOWY ASYMETRYCZNY FALOWNIK WIELOPOZIOMOWY OPARTY NA TECHNOLOGII DSTATCOM POPRAWIAJĄCY JAKOŚĆ ZASILANIA
Panneerselvam Sundaramoorthi, Govindasamy Saravana Venkatesh63-70
-
SYMULACJA KOMPUTEROWA ZWARCIA TRANSFORMATORA NADPRZEWODNIKOWEGO
Leszek Jaroszyński71-74
-
STEROWANIE ZORIENTOWANE POLOWO DLA SILNIKÓW INDUKCYJNYCH OPARTE NA SZTUCZNEJ INTELIGENCJI
Elmehdi Benmalek, Marouane Rayyam, Ayoub Gege, Omar Ennasiri, Adil Ezzaidi75-81
-
BADANIE ZMIAN POZIOMU BEZPIECZEŃSTWA SIECI W OPARCIU O PODEJŚCIE KOGNITYWNE
Olha Saliieva, Yurii Yaremchuk82-85
-
WYKORZYSTANIE UCZENIA MASZYNOWEGO W SYSTEMACH WYKRYWANIA WŁAMANIA DO SIECI
Ahmad Sanmorino, Herri Setiawan, John Roni Coyanda86-89
-
WYKORZYSTANIE WEKTORÓW WSPIERAJĄCYCH DO ZBUDOWANIA OPARTEGO NA REGUŁACH SYSTEMU WYKRYWANIA ZŁOŚLIWYCH PROCESÓW W RUCHU SIECIOWYM ORGANIZACJI
Halyna Haidur, Sergii Gakhov, Dmytro Hamza90-96
-
WYODRĘBNIANIE PAR EMOCJA-PRZYCZYNA: METODOLOGIA OPARTA NA BiLSTM
Raga Madhuri Chandra, Giri Venkata Sai Tej Neelaiahgari, Satya Sumanth Vanapalli97-103
-
UDOSKONALENIE α-PARAMETERYZOWANEJ METODY PRZEKSZTAŁCENIA RÓŻNICZKOWEGO Z OPTYMALIZATOREM DANDELION DO ROZWIĄZYWANIA RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH
Mustafa Raed Najeeb, Omar Saber Qasim104-108
-
METODA ADAPTACYJNEGO KODOWANIA STATYSTYCZNEGO Z UWZGLĘDNIENIEM CECHY STRUKTURALNE OBRAZÓW WIDEO
Volodymyr Barannik, Dmytro Havrylov, Serhii Pantas, Yurii Tsimura, Tatayna Belikova, Rimma Viedienieva, Vasyl Kryshtal109-114
-
OPTYMALIZACJA PROGNOZOWANIA SZEREGÓW CZASOWYCH: WYKORZYSTANIE MODELI UCZENIA MASZYNOWEGO W CELU ZWIĘKSZENIA DOKŁADNOŚCI PREDYKCYJNEJ
Waldemar Wójcik, Assem Shayakhmetova, Ardak Akhmetova, Assel Abdildayeva, Galymzhan Nurtugan115-120
-
SYNCHRONIZACJA ZARZĄDZANIA STEROWANEGO ZDARZENIAMI PODCZAS GROMADZENIA DANYCH
Valeriy Kuzminykh, Oleksandr Koval, Yevhen Havrylko, Beibei Xu, Iryna Yepifanova, Shiwei Zhu, Nataliia Bieliaieva, Bakhyt Yeraliyeva121-129
-
UKŁAD INTERFEJSU A WYDAJNOŚĆ PRZYSWAJANIA INFORMACJI W PROCESIE UCZENIA SIĘ
Julia Zachwatowicz, Oliwia Zioło, Mariusz Dzieńkowski130-135
-
ZAUTOMATYZOWANY SYSTEM ZARZĄDZANIA WODĄ Z PROGNOZOWANIEM ZAPOTRZEBOWANIA OPARTYM NA SZTUCZNEJ INTELIGENCJI
Arman Mohammad Nakib136-140
-
SCHEMATY UML SYSTEMU ZARZĄDZANIA STANOWISKAMI UTRZYMANIA
Lyudmila Samchuk, Yuliia Povstiana141-145
-
PRZEWIDYWANIE WAGI DEFEKTU KODU NA PODSTAWIE UCZENIA ZESPOŁOWEGO
Ghada Mohammad Tahir Aldabbagh, Safwan Omar Hasoon146-153
-
NIEDROGA RZECZYWISTOŚĆ ROZSZERZONA W CHIRURGII KRĘGOSŁUPA: BADANIE EMPIRYCZNE DOTYCZĄCE POPRAWY WIZUALIZACJI I DOKŁADNOŚCI CHIRURGICZNEJ
Iqra Aslam, Muhammad Jasim Saeed, Zarmina Jahangir, Kanza Zafar, Muhammad Awais Sattar154-163
Archiwum
-
Tom 15 Nr 3
2025-09-30 24
-
Tom 15 Nr 2
2025-06-27 24
-
Tom 15 Nr 1
2025-03-31 26
-
Tom 14 Nr 4
2024-12-21 25
-
Tom 14 Nr 3
2024-09-30 24
-
Tom 14 Nr 2
2024-06-30 24
-
Tom 14 Nr 1
2024-03-31 23
-
Tom 13 Nr 4
2023-12-20 24
-
Tom 13 Nr 3
2023-09-30 25
-
Tom 13 Nr 2
2023-06-30 14
-
Tom 13 Nr 1
2023-03-31 12
-
Tom 12 Nr 4
2022-12-30 16
-
Tom 12 Nr 3
2022-09-30 15
-
Tom 12 Nr 2
2022-06-30 16
-
Tom 12 Nr 1
2022-03-31 9
-
Tom 10 Nr 4
2020-12-20 16
-
Tom 10 Nr 3
2020-09-30 22
-
Tom 10 Nr 2
2020-06-30 16
-
Tom 10 Nr 1
2020-03-30 19
##plugins.themes.bootstrap3.article.main##
DOI
Authors
belikova.tatiana.nure@gmail.com
Abstrakt
W artykule zaproponowano metodę ulepszonego adaptacyjnego całkowego kodowania arytmetycznego. Metodę tę zaleca się stosować w technologii wielopoziomowego przetwarzania danych wideo w oparciu o metodę JPEG. Technologia opiera się na wykrywaniu kluczowych informacji na kilku etapach przetwarzania danych wideo. Aby zmniejszyć głośność wyjściową, algorytm RLE i całkowe kodowanie arytmetyczne są dostosowywane do nowej struktury danych wejściowych. Tym samym rozwinięto metodę linearyzacji dwuwymiarowych transformantów w oparciu o skanowanie zygzakowate. Różnice metody polegają na przeprowadzeniu zygzakowatej linearyzacji międzytransformacyjnej wektorów z uwzględnieniem doboru składowych widmowych określonych jako komplementarne. Po raz pierwszy opracowano podejście do rozkładu linearyzowanego transformantów w oparciu o wejście w zakresy kontrolne. W związku z obecnością w grupie różnych typów transformantów próg dobierany jest według kryterium całkowitej nieparzystej liczby nierównowagowych składników dopełniających. Na podstawie uwzględnienia prawdopodobieństwa wystąpienia elementów słownikowych udoskonalono zintegrowane kodowanie arytmetyczne (zintegrowane kodowanie arytmetyczne dwusłownikowe). Wyznaczanie bieżących składowych kodu według rozłożonego interwału roboczego w zależności od mocy słowników elementów znaczących i liczby powtórzeń. Pozwala to dodatkowo uwzględnić cechy statystyczne składników linearyzowanych transformantów o strukturze RLE i zmniejszyć długość kodu arytmetycznego; po raz pierwszy stworzono metodę kompresji transformantów, polegającą na redukcji różnego rodzaju redundancji w grupach transformantów. Porównawcza analiza eksperymentalna ze znanymi metodami wykazała, że opracowana technologia charakteryzuje się wyższym stopniem sprężania przy skróconym czasie przetwarzania. Pozwala to zapewnić niezbędny poziom dostępu i niezawodności w warunkach wzrostu pierwotnego wolumenu danych.
Słowa kluczowe:
Bibliografia
[1] Alakuijala J. et al.: JPEG XL next-generation image compression architecture and coding tools. Proc. SPIE 11137, 2019, 111370K. DOI: https://doi.org/10.1117/12.2529237
[2] Alakuijala J.: Image compression benchmark [https://drive.google.com/corp/ drive/folders/0B0w_eoSgaBLXY1JlYUVOMzM5VFk] (access 2024/09/08).
[3] Barannik D. et. al.: Steganographic Coding Technology for Hiding Information in Infocommunication Systems of Critical Infrastructure. 4th International Conference on Advanced Trends in Information Theory (ATIT). 2022, 88–91 [https://doi.org/10.1109/ATIT58178.2022.10024185]. DOI: https://doi.org/10.1109/ATIT58178.2022.10024185
[4] Barannik V. et. al.: Evaluation of Effectiveness of Masking Methods of Aerial Photographs. 3rd International Conference on Advanced Information and Communications Technologies (AICT). 2019, 415–418 [https://doi.org/10.1109/AIACT.2019.8847820]. DOI: https://doi.org/10.1109/AIACT.2019.8847820
[5] Barannik V. et. al.: Method of indirect information hiding in the process of video compression. Radioelectronic and Computer Systems 4, 2021, 119–131 [https://doi.org/10.32620/reks.2021.4]. DOI: https://doi.org/10.32620/reks.2021.4
[6] Bondžulić B. et. al.: Picture-wise just noticeable difference prediction model for JPEG image quality assessment. Vojnotehnički glasnik 70(1), 2022, 62–86 [https://doi.org/10.5937/vojtehg70-34739]. DOI: https://doi.org/10.5937/vojtehg70-34739
[7] Cardone B.: Fuzzy Transform Image Compression in the YUV Space. Computation 11(10), 2023, 1–19
[https://doi.org/10.3390/computation11100191]. DOI: https://doi.org/10.3390/computation11100191
[8] Chen T. et. al.: End-to-End Learnt Image Compression via Non-Local Attention Optimization and Improved Context Modeling. IEEE Transactions on Image Processing, 2021, 3179–3191 [https://doi.org/10.1109/tip.2021.3058615]. DOI: https://doi.org/10.1109/TIP.2021.3058615
[9] Cho J., Kwon O.-J., Choi S.: Improvement of JPEG XL Lossy Image Coding Using Region Adaptive DCT Block Partitioning Structure. IEEE Access 9, 113213–113225 [https://doi.org/10.1109/ACCESS.2021.3102235]. DOI: https://doi.org/10.1109/ACCESS.2021.3102235
[10] Duda J.: Asymmetric Numeral System implementation by Andrew Polar [http://ezcodesample.com/abs/abs_article.html] (access 2023/05/14).
[11] Duda J.: Asymmetric numeral systems. arXiv:0902.0271. [https://doi.org/10.48550/arXiv.0902.0271] (access 2024/09/08).
[12] Gonzalez R. et. al.: Digital Image Processing. 4th Edition. Pearson Education, 2018.
[13] ITU-T Recommendation H.265. High efficiency video coding. 2019 [https://www.itu.int/ rec/T-REC-H.265] (access 2024/09/08).
[14] Jinming L. et. al.: Learned Image Compression with Mixed Transformer-CNN Architectures. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, 14388–14397 [https://doi.org/10.1109/CVPR52729.2023.01383]. DOI: https://doi.org/10.1109/CVPR52729.2023.01383
[15] Kim I. et. al.: High efficiency video coding (HEVC) test model 12 (HM12) encoder description. JCTVC 14th meeting, 2013, JCTVC-N1002.
[16] Landu R. S.: Image Compression Using AI: Brief Insights into Deep Learning Techniques and AI Frameworks. International Journal of Engineering, Science, Technology and Innovation (IJESTI) 2(1), 2022, 1–6.
[17] Li C. et al.: Yolov6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976, 2022.
[18] Li H. et al.: Frequency-aware Transformer for Learned Image Compression. ICLR, 2024, 19, arXiv:2310.16387 (access 2024/09/08).
[19] Liao S. et. al.: Rate-Quality Based Rate Control Model for Neural Video Compression. International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, 4215–4219 [https://doi.org/10.1109/ICASSP48485.2024.10447777]. DOI: https://doi.org/10.1109/ICASSP48485.2024.10447777
[20] Lopes F. A. et. al.: FPGA implementation of the JPEG XR for onboard earth observation applications. Journal of Real-Time Image Processing 18(6), 2021, 1–12 [https://doi.org/10.1007/s11554-021-01078-y]. DOI: https://doi.org/10.1007/s11554-021-01078-y
[21] Park W. et. al.: Fast Computation of Integer DCT-V, DCT-VIII, and DST-VII for Video Coding. IEEE Transactions on Image Processing 28(12), 2019, 5839–5851. DOI: https://doi.org/10.1109/TIP.2019.2900653
[22] Ponomarenko N. et. al.: Image database TID2013: Peculiarities, results and perspectives. Signal Processing: Image Communication 30, 2015, 57–77. DOI: https://doi.org/10.1016/j.image.2014.10.009
[23] Rao K. et. al.: JPEG Series. 1st edition. River Publishers, 2021.
[24] Ren S. et al.: Faster R-CNN: Towards real-time object detection with region proposal networks. NeurIPS, 2015, arXiv:1506.01497.
[25] Russ J. C., Neal F. B.: The Image Processing Handbook. 7th Edition. CRC Press, 2018. DOI: https://doi.org/10.1201/b18983
[26] Sneyers J.: Improve the Web Experience With Progressive Image DecodingImprove the Web Experience With Progressive Image Decoding, 2021 [https://cloudinary.com/blog/improve_the_web_experience_with_progressive_image_decoding] (access 2024/09/08).
[27] Umbaugh S. E.: Digital Image Processing and Analysis: Computer Vision and Image Analysis 4th Edition. Taylor & Francis Ltd 2023. DOI: https://doi.org/10.1201/9781003221135
[28] Wassenberg J. et. al.: DIS Text of ISO IEC 18181-1 (JPEG XL), document JPEG (ISO/IEC JTC 1/SC 29/WG 1). 86th Meeting, 2020.
[29] Wassenberg J., Sneyers J.: JPEG XL White Paper, document JPEG(ISO/IEC JTC 1/SC 29/WG 1). 87th Meeting. Germany, Erlangen, 04.2020, N87021, 27–30.
[30] Wiegand T. et. al.: Overview of the H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 2003, 560–576. DOI: https://doi.org/10.1109/TCSVT.2003.815165
[31] Zhang X.: Shufflenet: An extremely efficient convolutional neural network for mobile devices. CVPR, 2018, arXiv:1707.01083. DOI: https://doi.org/10.1109/CVPR.2018.00716
##plugins.themes.bootstrap3.article.details##
Abstract views: 246

