ANALIZA POLA EMG W MIKRO/NANOSKOPOWYCH MODALECH MATERII

Pavel Fiala

fialap@feec.vutbr.cz
SIX Research Center, Department of Theoretical and Experimental Electrical Engineering (Czechy)
http://orcid.org/0000-0002-7203-9903

Karel Bartušek


Institute of Scientific Instruments of the ASCR v.v.i. (Czechy)
http://orcid.org/0000-0002-6598-5424

Jarmila Dědková


Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering (Czechy)
http://orcid.org/0000-0002-7919-0489

Premysl Dohnal


Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering (Czechy)
http://orcid.org/0000-0003-1163-4458

Abstrakt

W artykule przedyskutowano (makro/mikro/nanoskopowy) model numeryczny przeznaczony do dokładniejszej analizy procesów elektrohydrodynamicznych (EMHD) w wodzie na poziomie atomowym. Przeprowadzone w tym celu eksperymenty wykazały, że wprowadzenie względnie jednorodnej struktury okresowej (dejonizowanej, odgazowanej lub destylowanej wody w polu magnetycznym wpłynie na strukturę atomową, molekuły
i odpowiednie wiązania. W tym kontekście niniejszy artykuł koncentruje się na projektowaniu, analizie i ocenie zachowania rozległego systemu, który reprezentuje H2O z perspektywy mikroskopowej, a także nakreśla właściwości i zmiany wiązań w badanych próbkach wody. Dodatkowo, zastosowano prosty przykład służy do definiowania uzyskanych wyników na podstawie analizy statycznych, spiralnych statycznych gradientowych i niestacjonarnych gradientowych pól elektromagnetycznych w zakresie częstotliwości od 1 GHz do 10 GHz.


Słowa kluczowe:

multiscaling, modelowanie, woda, klaster, atomy, cząsteczki, budowa, materia, pomiar niskiego poziomu

ANSYS, Ansys Multiphysics Manuals, Ansys,(1994–2018), Houston, USA.
  Google Scholar

Bakker H.J., Kropman M.F., Omta A.W.: Effect of ions on the structure and dynamics of liquid water. J. Phys. Condensed Matter 17/2005, 3215–3224.
  Google Scholar

Bartušek K., Fiala P., Mikulka J.: Numerical Modeling of Magnetic Field Deformation as Related to Susceptibility Measured with an MR System. Radioengineering 17(4)/2008, 113–118.
  Google Scholar

Bartušek K., Gescheidtová E., Mikulka J.: Data Processing in Studying Biological Tissues, Using MR Imaging Techniques. 33 th International Conference on Telecommunications and Signal Processing. Budapešť: Asszisztenda Szervezo, 2010, 171–175.
  Google Scholar

Bartušek K., Marcoň P., Fiala P., Máca J., Dohnal P.: The Effect of a Spiral Gradient Magnetic Field on the Ionic Conductivity of Water. Water 9(9)/2017, 1–8.
  Google Scholar

Chaplin M.: http://www1.lsbu.ac.uk/water/water_structure_science.html.
  Google Scholar

Chaplin M.F.: A proposal for the structuring of water. Biophysical Chemistry 83/1999, 211–221.
  Google Scholar

Clary D. C.: Quantum dynamics in the smallest water droplet. Science 351/2016, 1267–1268.
  Google Scholar

Cole W. T. S., Farrell J. D., Wales D. J., Saykally R. J.: Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm. Science 352/2016, 1194–1197.
  Google Scholar

Drexler P., Fiala P.: Power supply sources based on resonant energy harvesting. Microsystem Technologies 18(7,8)/2012, 1181–1192.
  Google Scholar

Drexler P., Kadlec R., Bartušek K., Fiala P., Kubásek R.: Magnetoinductive Lens for Experimental Mid- field MR Tomograph. In Proceedings of PIERS 2010 in Cambridge. Cambridge 2010, 1047–1050.
  Google Scholar

Elia V., Marchettini N., Napoli E., Tiezzi E.: Nanostructures of Water Molecules in Iteratively Filtered Water. Water 7/2016, 147–157.
  Google Scholar

Elia V., Niccoli M.: New physico-chemical properties of water induced by mechanical treatments. J. Therm. Anal. Calor. 61/2000, 527–537.
  Google Scholar

Fiala P., Friedl M.: Application of an Electromagnetic Numerical Model in Accurate Measurement of High Velocities. IAPGOS 3/2015, 3–10.
  Google Scholar

Fiala P., Jirků T., Gescheidtová E.: Tuned Structures for Special THz Applications. Proceedings of the Progress In Electromagnetics Research symposium. Cambridge The electromagnetics academy 2009, 151–155.
  Google Scholar

Fiala P.: Pulse- powered virtual cathode oscillator. Transactions on Dielectrics and Electrical Insulation 18(4)/2011, 1046–1053.
  Google Scholar

Frank H. S., Wen W.-Y.: Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Faraday Discussions 24/1957, 133–140.
  Google Scholar

Goncharuk V. V., Kavitskaya A. A., Romanyukina I. Y., Loboda O. A.: Revealing water’s secrets: deuterium depleted water. Chemistry Central Journal 7/2013, 103.
  Google Scholar

Hansen T. C., Falenty A., Kuhs W. F.: Modelling ice Ic of different origin and stacking-faulted hexagonal ice using neutron powder diffraction data, in Physics and Chemistry of Ice, ed. W. Kuhs. Royal Society of Chemistry, Cambridge, 2007, 201–208.
  Google Scholar

Ignatov I., Mosin O.: Structural Mathematical Models Describing Water Clusters. Mathematical Theory and Modeling 3(11)/2013.
  Google Scholar

Ikeshoji T., Aihara T., Ohno K., Kawazoe Y.: Ab-initio Molecular Dynamics Simulation of Water Clusters. Sci. Rep. RITU A41/1996, 175–182.
  Google Scholar

Kadlec R., Fiala P.: The Response of Layered Materials to EMG Waves from a Pulse Source. Progress In Electromagnetics Research M. 42/2015, 179–187.
  Google Scholar

Krishnan M., Verma A., Balasubramanian S.: Proc. Indian Acad. Sci. (Chem. Sci.) 113(5,6)/2001, 579–590.
  Google Scholar

Kuhs W. F., Sippel C., Falenty A., Hansen T. C.: Extent and relevance of stacking disorder in “ice Ic”. Proceedings of the National Academy of Sciences 109/2012, 21259–21264.
  Google Scholar

Malkin T. L., Murray B. J., Brukhno A. V., Anwar J., Salzmann C. G.: Structure of ice crystallized from supercooled water. Proceedings of the National Academy of Sciences 109/2012, 1041–1045.
  Google Scholar

Malkin T. L., Murray B. J., Salzmann C. G., Molinero V., Pickering S. J., Whale T. F.: Stacking disorder in ice I. Physical Chemistry Chemical Physics 17/2015, 60–76.
  Google Scholar

Marcoň P., Bartušek K., Mikulka J., Čáp M.: Magnetic susceptibility modelling using ANSYS. Progress In Electromagnetics 2011, 190–193.
  Google Scholar

Moore E. B., Molinero V.: Is it cubic? Ice crystallization from deeply supercooled water. Physical Chemistry Chemical Physics 13/2011, 20008–20016.
  Google Scholar

Mootz D., Seidel R.: Polyhedral clathrate hydrates of a strong base: phase relations of crystal structures in the system tetramethylammonium hydroxide-water. J. Inclusion Phenomena 8/1990, 139–157.
  Google Scholar

Muscia R.: Equivalent magnetic charge in helicoidal magnets. J. Appl. Phys. 104/2008, 103916.
  Google Scholar

Ohmine I., Tanaka H.: Chem. Rev. 93/1993, 2545.
  Google Scholar

Perera A., Mazighi R., Kežíc B.: Fluctuations and micro-heterogeneity in aqueous mixtures. Journal of Chemical Physics 136/2012, 174516.
  Google Scholar

Perera A.: On the microscopic structure of liquid water. Molecular Physics 109/2011, 2433–2441.
  Google Scholar

Rahman A., Stillinger F. H.: J. Chem. Phys. 55/1971, 3336.
  Google Scholar

Richardson J. O., Pérez C., Lobsiger S., Reid A. A., Temelso B., Shields G. C., Kisiel Z., Wales D. J., Pate B. H., Althorpe S. C.: Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351/2016, 1310–1313.
  Google Scholar

Shelton D. P.: Long-range orientation correlation in water. Journal of Chemical Physics 141/2014, 224506.
  Google Scholar

Stratton J. A.: Electromagnetic field theory. SNTL, Praha 1961.
  Google Scholar

Vlachová Hutová E., Bartušek K., Dohnal P., Fiala P.: The Influence of a Static Magnetic Field on the Behavior of a Quantum Mechanical Model of Matter. Measurement, Journal of the International Measurement Confederation (IMEKO) 96/2017, 18–23.
  Google Scholar

Vostrikov A.A., Drozdov S.V., Rudnev V.S., Kurkina L.I.: Molecular dynamics study of neutral and charged water clusters. Computational Materials Science 35/2006, 254–260.
  Google Scholar

Weisstein E.W.: Galerkin Method, MathWorld, 28 March 2015, http://mathworld.wolfram.com/GalerkinMethod.html. 1 April 2015.
  Google Scholar


Opublikowane
2019-03-03

Cited By / Share

Fiala, P., Bartušek, K., Dědková, J., & Dohnal, P. (2019). ANALIZA POLA EMG W MIKRO/NANOSKOPOWYCH MODALECH MATERII. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(1), 4–10. https://doi.org/10.5604/01.3001.0013.0877

Autorzy

Pavel Fiala 
fialap@feec.vutbr.cz
SIX Research Center, Department of Theoretical and Experimental Electrical Engineering Czechy
http://orcid.org/0000-0002-7203-9903

Autorzy

Karel Bartušek 

Institute of Scientific Instruments of the ASCR v.v.i. Czechy
http://orcid.org/0000-0002-6598-5424

Autorzy

Jarmila Dědková 

Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering Czechy
http://orcid.org/0000-0002-7919-0489

Autorzy

Premysl Dohnal 

Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering Czechy
http://orcid.org/0000-0003-1163-4458

Statystyki

Abstract views: 249
PDF downloads: 176