Using Picus® Sonic Tomograph to assess the health state of trees of monumental sizes

Wojciech Durlak


Department of Ornamental Plants, Dendrology and Landscape Architecture, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin (Poland)

Margot Dudkiewicz


Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin (Poland)

Krystyna Pudelska


Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin (Poland)

Marek Dąbski


Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin (Poland)

Abstract

The aim of the study was to examine the usefulness of The Picus 3 Sonic Tomograph to assess the health state of trees of monumental sizes, which are an important part of the cultural landscape. In the study there were selected tree species Tilia cordata, Gingko biloba and Ulmus glabra growing in the vicinity of Lublin in different habitat conditions. Changes in the internal structure of the tree trunks were shown on the colour tomograms. Two tested specimens of Tilia cordata located in Radawiec Duży were intended to be cut down due to the construction of the ring road of Lublin. This made it possible to compare the obtained tomograms with the actual state of the inside of tree trunks after cutting down the examined trees. The results of Picus tomography Ulmus glabra and Gingko biloba growing in the historic park in Czesławice were confirmed by a visual assessment of trees. In each case the number of installed sensors influenced the image resolution and accuracy of the obtained tomograms. Diagnostics using sound waves is important in assessing the state of health of each tree, but it is especially recommended for testing of valuable trees. It allows for early diagnosis and selection of such protective actions to reduce to a minimum the destructive impact study on the body of the plant.


Keywords:

Gingko biloba, Tilia cordata, Ulmus glabra, trees of monumental sizes, PiCUS Sonic Tomography

Allison R.B., Wang X. 2015. Nondestructive teesting in the urban forest. [W:] Nondestructive evaluation of wood. (Red.) Ross R. J. General Technical Report FPL-GTR-238. Department of Agriculture, Forest Service, Forest Product Laboratory Madison, WI: U.S.: 77-86.
  Google Scholar

Brazee N. J., Marra R. E., Göcke L., Van Wassenaer P. 2011. Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography. Forestry 84(1): 33-39.
DOI: https://doi.org/10.1093/forestry/cpq040   Google Scholar

Chomicz E. 2007. Bezinwazyjne metody wykrywania defektów wewnątrz pni drzew stojących (Tomograf PiCUS® Sonic i PiCUS® Treetronic). Leśne Prace Badawcze 3: 117-121.
  Google Scholar

Chomicz E. 2010. Bezinwazyjne diagnozowanie kondycji drzew zabytkowych z zastosowaniem tomografów PiCUS®. Kurier Konserwatorski 8: 29-32.
  Google Scholar

Costello L.R., Quarles S.L. 1999. Detection of wood decay in blue gum and elm: an evaluation of the Resistograph® and the portable drill. J Arbor. 25: 311-318.
DOI: https://doi.org/10.48044/jauf.1999.041   Google Scholar

Deflorio G., Fink S., Schwarze F. 2008. Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation. Wood Sci. Technol. 42: 117-132.
DOI: https://doi.org/10.1007/s00226-007-0159-0   Google Scholar

Gilbert E.A., Smiley E.T. 2004. Picus Sonic Tomography for the quantification of decay in white oak (Quercus alba) and hickory (Carya spp.). Journal of Arboriculture 30(5): 277-281.
  Google Scholar

Göcke L., Rust S., Weihs U., Günther T., Rücker C. 2007. Combining sonic and electrical impedance tomography for the nondestructive testing of trees. Proceedings of the 15th International Symposium on Nondestructive Testing of Wood: September 10-12, Duluth, Minnesota, USA: 31-42.
  Google Scholar

Hayes E. 2001. Evaluating tree defects, 2nd ed. Safetrees, Rochester, MN. 34 pp.
  Google Scholar

Kazemi-Najafi S., Shalbafan A., Ebrahimi G. 2009. Internal decay assessment in standing beech trees using ultrasonic velocity measurement. Eur J Forest Res. 128: 345–350.
DOI: https://doi.org/10.1007/s10342-009-0269-3   Google Scholar

Kuźniewski E. 1996. Ochrona przyrody na Śląsku Opolskim. Państwowy Instytut Naukowy, Instytut Śląski, Opole.
  Google Scholar

Luley C.L. 2005. Wood decay fungi common to living urban trees in the northeast and central United States. Urban Forestry LLC, Naples, NY. 61 pp.
  Google Scholar

Machanik A., Kurczewski R. 2014. Dziedzictwo przyrodnicze w rozwoju turystyki kulturowej na terenach wiejskich. Turystyka Kulturowa 7:34-48.
  Google Scholar

Majdecki L. 1980– 1986. Tabela wiekowa drzew. Rkps, Oddział Architektury Krajobrazu SGGW, Warszawa.
  Google Scholar

Matheny N.P., Clark J.R. 1994. Evaluation of hazard trees in urban areas, 2nd ed. International Society of Arboriculture, Savoy, IL: 85.
  Google Scholar

Mattheck C.G., Breloer H. 1994. The body language of trees: A Handbook of Failure Analysis. Her Majesty’s Stationery Office, London, UK: 240.
  Google Scholar

Nicolotti G., Socco L.V., Martinis R., Godio A. Sambuelli L. 2003. Application and comparison of three tomographic techniques for detection of decay in trees. Journal of Arboriculture 29: 66-77.
DOI: https://doi.org/10.48044/jauf.2003.009   Google Scholar

Pacyniak C. 1988. Chrońmy drzewa pomniki - przyrody. Aura 10: 19-21.
  Google Scholar

PICUS Sonic Tomograph. Manual Program version Q72 http://www.sorbus-intl.co.uk/image/data/Picus/small_PiCUS_Q72_Manual_eng.pdf (dostęp 25.03.2016)
  Google Scholar

Pokorny J. 2003. Urban tree risks management: A community guide to program design and implementation. NA-TP-03-03. USDA Forest Service, Northeastern Area, State and Private Forestry, St. Paul, MN. 194 pp.
  Google Scholar

Przesmycka E. 2011. Alley as a determinant of the conservation status of the identity of the European cultural landscape on the example of south-eastern Poland. Architektura krajobrazu 1: 44-53
  Google Scholar

Pudelska K., Sosnowska M., Chyżewska R., Mirosław A., Rojek K. 2014. Commemorative trees as the evidence of the ancient city greenery of the Lublin’s Center [in.] Creative Urbanism Monograph, Lviv: 503-509.
  Google Scholar

Rabe C. Ferner D., Fink S., Schwarze F. W. M. R. 2004. Detection of decay in trees with stress waves and interpretation of acoustic tomograms. Arboric. J. 28: 3-19.
DOI: https://doi.org/10.1080/03071375.2004.9747399   Google Scholar

Rejestr pomników przyrody w województwie lubelskim w 2014 r. http://bip.lublin.rdos.gov.pl/rejestr-form-ochrony-przyrody (dostęp 27.12.2014 r.)
  Google Scholar

Shigo A.L., Shortle W.C. 1985. Spruce budworms handbook: Shigometry - a reference guide. Agriculture Handbook No 646: U.S. Department of Agriculture, Forest Service, Cooperative State Research Service; 48pp.
  Google Scholar

Shortle W.C., Smith K.T. 1987. Electrical properties and rate of decay in spruce and fir Wood. Phytopathology 77(6): 811-814.
DOI: https://doi.org/10.1094/Phyto-77-811   Google Scholar

Siewniak M. 1988. Ochrona drzew pomnikowych, Komunikaty Dendrologiczne 7: 3-15.
  Google Scholar

Siewniak M. 2010. Pielęgnowanie drzew – dzisiaj. Kurier Konserwatorski 8: 24-28.
  Google Scholar

Tattar T.A., Shigo A.L., Chase T. 1972. Relationship between the degree of resistance to a pulsed electric current and wood in progressive stages of discoloration and decay in living trees. Canadian Journal of Forest Research, 2(3): 236-243.
DOI: https://doi.org/10.1139/x72-039   Google Scholar

Wang X., Allison R.B. 2008. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboriculture & Urban Forestry 34(1): 1–4.
DOI: https://doi.org/10.48044/jauf.2008.001   Google Scholar

Wang X., Allison R.B. Wang L., Ross R.J. 2007. Acoustic tomography for decay detection in red oak trees. Research Paper FPL-RP-642. Madison WI:U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: 1-7.
  Google Scholar

Wilcox W.W. (1988). Detection of early stages of wood decay with ultrasonic pulse velocity. For. Pro. J. 38: 5.
  Google Scholar

Współczynniki przyrostowe drzew. http://mdc.mo.gov/your-property/your-trees-and-woods/backyard-tree-care/how-old-tree (dostęp 27.02.2016 r.)
  Google Scholar

Download


Published
2017-06-30

Cited by

Durlak, W., Dudkiewicz, M., Pudelska, K., & Dąbski, M. (2017). Using Picus® Sonic Tomograph to assess the health state of trees of monumental sizes. Teka Komisji Architektury, Urbanistyki I Studiów Krajobrazowych, 13(2), 73–82. https://doi.org/10.35784/teka.1704

Authors

Wojciech Durlak 

Department of Ornamental Plants, Dendrology and Landscape Architecture, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin Poland

Authors

Margot Dudkiewicz 

Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin Poland

Authors

Krystyna Pudelska 

Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin Poland

Authors

Marek Dąbski 

Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin Poland

Statistics

Abstract views: 419
PDF downloads: 236