XXXV Congress OSTIV – Organisation Scientifique et Technique Internationale du Vol à Voile
Jarosław Pytka
j.pytka@pollub.plLublin University of Technology (Poland)
https://orcid.org/0000-0002-5474-3585
Abstract
Report from XXXV Kongres OSTIV – Organisation Scientifique et Technique Internationale du Vol à Voile
Keywords:
OSTIVReferences
[1] Albano, E., Rodden W.P. (1969). A Doublet-Lattice Method for Calculating Lift Distributions on Oscillating Surfaces in Subsonic Flows. AIAA Journal, 7(2).
Google Scholar
[2] Bertolotti, F.P. (2001). Effect of Atmospheric Turbulence on a Laminar Boundary-Layer. Technical Soaring, 25, s. 154–159.
Google Scholar
[3] Böhnisch, N. et al. (2022). Whirl Flutter for Distributed Propulsion Systems on a Flexible Wing. AIAA SCITECH 2022 Forum, American Institute of Aeronautics and Astronautics, https://arc.aiaa.org/doi/10.2514/6.2022-1755.
Google Scholar
[4] Boermans, L.M.M., Lasauskas E. (2021). On the Gust Loads of Sailplanes. XXXV OSTIV Congress – Congress Proceedings, s. 9–13.
Google Scholar
[5] Chernov, V.V. (1965). Results of Research in the Field of Structural Strength Limits for Sporting Gliders. OSTIV Publication VIII, https://journals.sfu.ca/ts/index.php/op/article/view/1541/1473.
Google Scholar
[6] Donely, P. (1950). Summary of Information Relating to Gust Loads on Airplanes. NACA Report 997. https://ntrs.nasa.gov/api/citations/19930090953/downloads/19930090953.pdf.
Google Scholar
[7] Drela, M. (1999). Integrated Simulation Model for Preliminary Aerodynamic, Structural, and Control-Law Design of Aircraft. AIAA 99-1394. 40th Structures, Structural Dynamics, and Materials Conference and Exhibit, DOI: https://doi.org/10.2514/6.1999-1394.
Google Scholar
[8] Fohlmeister, L., Adam T.J., Schwarz B. (2021). Optical deformation measurement of a two-seater cockpit under emergency landing conditions during a quasi-static load test. XXXV OSTIV Congress – Congress Proceedings, s. 78–81.
Google Scholar
[9] Greiner, M., Würz W. (2021). Laminar Separation Bubbles at Unsteady Inflow Conditions – A Status Report. XXXV OSTIV Congress – Congress Proceedings, s. 57–61, https://ostiv.org/congress/congress-events/congress-details/xxxv-congress-2.html?_hash=Oi1gBqbW1bbwJ34%2Bb7a%2BP%2Bt4s86dpsgjyRHCnja4RQw%3D&ctx=a%3A
Google Scholar
1%3A%7Bs%3A2%3A“id“%3Bi%3A525%3B%7D&p=ostiv-docs%2Fcongress%2F2021%2F2021_OSTIV_Congress_proceedings.pdf.
Google Scholar
[10] Hobblit, F.M. (1988). Gust Loads on Aircraft: Concepts and Applications. Washington D.C.: AIAA Education Series.
Google Scholar
[11] Hurley, T., Vandenburg J. (2002). Small Airplane Crashworthiness Design Guide. Phoenix: Simula Technologies.
Google Scholar
[12] Kämpf, K-P., Crawley E.F., Hansman J. (1989). Experimental Investigation of the Crashworthiness of Scaled Composite Sailplane Fuselages. Journal of Aircraft, 26(7), s. 675–681.
Google Scholar
[13] Lindner, T., Rolffs Ch., Dierksen N., Ökzüz R., Scheffler S., Dorn O. (2021). Proceedings in the Development of a Crashworthy Glider Cockpit. XXXV OSTIV Congress – Congress Proceedings, s. 75–77.
Google Scholar
[14] MacCready, P.B. (1962). The Inertial Subrange of Atmospheric Turbulence. Journal of Geophysical Research, 67, s. 1051–1059. DOI: https://doi.org/10.1029/JZ067i003p01051.
Google Scholar
[15] Pope, S.B. (2000). Turbulent Flows. Cambridge: Cambridge University Press.
Google Scholar
[16] Popelka, L., Matějka M., Zelený L., Uruba V. (2014). CTA Measurement of Longitudinal Velocity Fluctuations and Its Spectra in Thermal Convection Atmosphere and Lee-Wave Condition Using Sailplane In-Flight Experiment. XXXII OSTIV Congress, Leszno.
Google Scholar
[17] Pratt, K.G., Walker W.G. (1954). A Revised Gust-Load Formula and Re-Evaluation of the V-G Data Taken on Civil Transport Airplanes from 1933 to 1950. NACA-Report 1206, https://ntrs.nasa.gov/api/citations/19930090988/downloads/19930090988.pdf.
Google Scholar
[18] Röger, W. (2007). Safe and Crashworthy Cockpit, Fachhochschule Aachen, Fachbereich Luft- und Raumfahrttechnik.
Google Scholar
[19] Schwochow, J. (2021). Gust Response on Elastic Sailplanes. XXXV OSTIV Congress – Congress Proceedings, s. 4–7.
Google Scholar
[20] Scholz, W., Leis S., Petters W., Würz W., Axthelm J., Fichter W. (2021). ASASys – Anti-Stall Assistant System for Sailplanes. XXXV OSTIV Congress – Congress Proceedings, s. 19–22.
Google Scholar
[21] Schuster, U., Wolf K. (2014). Improvement of Sailplane Crashworthiness trough Keel Beams with Silicone Cores.Technical Soaring, 38, s. 16–26.
Google Scholar
[22] Segal, A.M. (1989). Aircraft (Full-Size Glider) Crash-Worthiness Impact Test. Technical Soaring, 14(2), s. 40–46.
Google Scholar
[23] Shanahan, D. (2004). Human Tolerance and Crash Survivability, Injury Analysis, RTO-EN-HFM-113. Carlsbad (USA).
Google Scholar
[24] Sperber, M. (1998). Untersuchung des Insassenschutzes bei Unfällen mit Segelflugzeugen und Motorseglern-Forschungsauftrag-Nr. L-2/93-50112/92. TÜV Rheinland GmbH – Institut für Verkehrssicherheit – Abteilung Luftfahrttechnik, Köln.
Google Scholar
[25] Vink W.J., de Jonge J.B. (1997). A MATLAB Program to Study Gust Loading on a Simple Aircraft Model, National Aerospace Laboratory NLR, 1997-07-29, NLR Technical Publication TP 97379 U https://reports.nlr.nl/server/api/core/bitstreams/6e9dfbac-e14a-4632-b5e6-5ad31c43a6cd/content.
Google Scholar
[26] Waibel, G. (2000). Designing a Crashworthy Cockpit Sill. Technical Soaring, 24(4), s. 109–112.
Google Scholar
[27] Comment Response Document to Notice of Proposed Amendment 2007–12. (2008). Cockpit crashworthiness. European Aviation Safety Agency.
Google Scholar
[28] Doublet Lattice Method: https://www.mathworks.com/matlabcentral/fileexchange/110175-dlmpro?s_tid=prof_contriblnk&s_tid=mwa_osa_a.
Google Scholar
[29] EASA. (2009). Certification Specifications for Sailplanes, CS-22, https://www.easa.europa.eu/en/document-library/certification-specifications/group/cs-22-sailplanes-andpowered-sailplanes#cs-22-sailplanes-and-powered-sailplanes.
Google Scholar
[30] Ground Vibration Testing: https://www.bksv.com/en/knowledge/applications/structural-dynamics/ground-vibration-test.
Google Scholar
Authors
Jarosław Pytkaj.pytka@pollub.pl
Lublin University of Technology Poland
https://orcid.org/0000-0002-5474-3585
Statistics
Abstract views: 10PDF downloads: 4