ANALYTICS AND DATA SCIENCE APPLIED TO THE TRAJECTORY OUTLIER DETECTION
Article Sidebar
Open full text
Issue Vol. 16 No. 2 (2020)
-
ANALYTICS AND DATA SCIENCE APPLIED TO THE TRAJECTORY OUTLIER DETECTION
Alexis J. LOPEZ, Perfecto M. QUINTERO, Ana K. HERNANDEZ5-17
-
DESIGN OF MODIFIED SECOND ORDER SLIDING MODE CONTROLLER BASED ON ST ALGORITHM FOR BLOOD GLUCOSE REGULATION SYSTEMS
Ekhlas H. KARAM, Eman H. JADOO18-31
-
MEASURING PROPENSITY OF ONLINE PURCHASE BY USING THE TAM MODEL: EVIDENCE FROM ITALIAN UNIVERSITY STUDENTS
Maria CORDENTE-RODRIGUEZ, Simone SPLENDIANI, Patrizia SILVESTRELLI32-52
-
CONTROLLING THE MEAN ARTERIAL PRESSURE BY MODIFIED MODEL REFERENCE ADAPTIVE CONTROLLER BASED ON TWO OPTIMIZATION ALGORITHMS
Rawaa HAAMED, Ekhlas HAMEED53-67
-
A CUSTOMER-CENTRIC APPLICATION FOR A CINEMA HOUSE
Raphael Olufemi AKINYEDE, Temitayo Elijah BALOGUN, Abiodun Boluwade ROTIMI, Oluwasefunmi Busola FAMODIMU68-79
-
FUZZY CONTROLLER OF MODEL REDUCTION DISTILLATION COLUMN WITH MINIMAL RULES
Nasir ALAWAD, Afaf ALSEADY80-94
-
EVALUATION OF ROBOTIC CLEANING TECHNOLOGIES: PRESERVING A BRITISH ICONIC BUILDING
Ahmed A.H. HAQQANI, Seenu N, Mukund JANARDHANAN, Kuppan Chetty RM95-111
-
PERFORMANCE ANALYSIS AND EVALUATION OF MASSIVE MIMO SYSTEM
Muaayed F. AL-RAWI, Izz K. ABBOUD, Nasir A. AL-AWAD112-119
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
Main Article Content
DOI
Authors
Abstract
Nowadays, logistics for transportation and distribution of merchandise are a key element to increase the competitiveness of companies. However, the election of alternative routes outside the panned routes causes the logistic companies to provide a poor-quality service, with units that endanger the appropriate deliver of merchandise and impacting negatively the way in which the supply chain works. This paper aims to develop a module that allows the processing, analysis and deployment of satellite information oriented to the pattern analysis, to find anomalies in the paths of the operators by implementing the algorithm TODS, to be able to help in the decision making. The experimental results show that the algorithm detects optimally the abnormal routes using historical data as a base.
Keywords:
References
Cao, K., Shi, L., Wang, G., Han, D., & Bai, M. (2014). Density-Based Local Outlier Detection on Uncertain Data. In: F. Li, G. Li, S.W. Hwang, B. Yao & Z. Zhang, (Eds.), Web-Age Information Management (pp. 67–71). Springer International Publishing, Cham. DOI: https://doi.org/10.1007/978-3-319-08010-9_9
Domínguez, D.R., Redondo, R.P.D., Vilas, A.F., & Khalifa, M.B. (2017). Sensing the city with Instagram: Clustering geolocated data for outlier detection. Expert Systems with Applications, 78, 319–333. DOI: https://doi.org/10.1016/j.eswa.2017.02.018
Fontes, V.C., de Alencar, L.A., Renso, C., & Bogorny, V. (2013). Discovering Trajectory Outliers between Regions of Interest. In Proceedings of XIV GEOINFO (p. 12). Campos do Jordao, Brazil.
Gan, J., & Tao, Y. (2015). DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data – SIGMOD ’15 (pp. 519–530). ACM Press, Melbourne, Victoria, Australia. DOI: https://doi.org/10.1145/2723372.2737792
Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques. Third edition. Elsevier.
Hazel, G.G. (2008). Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection. In IEEE Transactions on Geoscience and Remote Sensing, 38(3), 1199–1211. DOI: https://doi.org/10.1109/36.843012
Lee, J.G., Han, J., & Li, X. (2008). Trajectory Outlier Detection: A Partition-and-Detect Framework. In: 2008 IEEE 24th International Conference on Data Engineering (pp. 140–149). https://doi.org/10.1109/ICDE.2008.4497422 DOI: https://doi.org/10.1109/ICDE.2008.4497422
Lei, B., & Mingchao, D. (2018). A distance-based trajectory outlier detection method on maritime traffic data. In 2018 4th International Conference on Control, Automation and Robotics (ICCAR) (pp. 340–343). https://doi.org/10.1109/ICCAR.2018.8384697 DOI: https://doi.org/10.1109/ICCAR.2018.8384697
Liao, T.W. (2005). Clustering of time series data—a survey. Pattern Recognition, 38(11), 1857–1874. DOI: https://doi.org/10.1016/j.patcog.2005.01.025
Liu, Z., Pi, D., & Jiang, J. (2013). Density-based trajectory outlier detection algorithm. Journal of Systems Engineering and Electronics, 24(2), 335–340. DOI: https://doi.org/10.1109/JSEE.2013.00042
Markovic, N., Sekula, P., Vander Laan, Z., Andrienko, G., & Andrienko, N. (2019). Applications of Trajectory Data From the Perspective of a Road Transportation Agency: Literature Review and Maryland Case Study. IEEE Transactions on Intelligent Transportation Systems, 20(5), 1858–1869. https://doi.org/10.1109/TITS.2018.2843298 DOI: https://doi.org/10.1109/TITS.2018.2843298
Munoz-Organero, M., Ruiz-Blaquez, R., & Sánchez-Fernández, L. (2018). Automatic detection of traffic lights, street crossings and urban roundabouts combining outlier detection and deep learning classification techniques based on GPS traces while driving. Computers, Environment and Urban Systems, 68, 1–8. https://doi.org/10.1016/j.compenvurbsys.2017.09.005 DOI: https://doi.org/10.1016/j.compenvurbsys.2017.09.005
Sarmento, J., Renneboog, L., & Matos, P.V. (2017). Measuring highway efficiency by a DEA approach and the Malmquist index. European Journal of Transport and Infrastructure Research, 17(4), 530–551.
Schmitt, J.P., & Baldo, F. (2018). A Method to Suggest Alternative Routes Based on Analysis of Automobiles’ Trajectories. In: 2018 XLIV Latin American Computer Conference (CLEI) (pp. 436–444). http://doi.org/10.1109/CLEI.2018.00059. DOI: https://doi.org/10.1109/CLEI.2018.00059
Shaikh, S.A., & Kitagawa, H. (2014). Efficient distance-based outlier detection on uncertain datasets of Gaussian distribution. World Wide Web, 17(4), 511–538. DOI: https://doi.org/10.1007/s11280-013-0211-y
Yuan, G., Sun, P., Zhao, J., Li, D., & Wang, C. (2017). A review of moving object trajectory clustering algorithms. Artificial Intelligence Review, 47(1), 123–144. DOI: https://doi.org/10.1007/s10462-016-9477-7
Article Details
Abstract views: 383
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
