COMPUTER VISION BASED ON RASPBERRY PI SYSTEM
Mohanad ABDULHAMID
moh1hamid@yahoo.comAl-Hikma University, Karada Kharidge, Baghdad (Iraq)
Otieno ODONDI
University of Nairobi, P.O.Box 30197, GPO, Nairobi (Kenya)
Muaayed AL-RAWI
AL-Mustansiryia University, Baghdad (Iraq)
Abstract
The paper focused on designing and developing a Raspberry Pi based system employing a camera which is able to detect and count objects within a target area. Python was the programming language of choice for this work. This is because it is a very powerful language, and it is compatible with the Pi. Besides, it lends itself to rapid application development and there are online communities that program Raspberry Pi computer using python. The results show that the implemented system was able to detect different kinds of objects in a given image. The number of objects were also generated displayed by the system. Also the results show an average efficiency of 90.206% was determined. The system is therefore seen to be highly reliable.
Keywords:
Computer vision, Raspberry Pi systemReferences
Islam, M. M., Azad, M. S. U., Alam, M. A., & Hassan, A. (2014). Raspberry Pi and image processing based Electronic Voting Machine (EVM). International Journal of Scientific and Engineering Research, 5(1), 1506–1510.
Google Scholar
Jana, S., & Borkar, S. (2017). Autonomous object detection and tracking using Raspberry Pi. International Journal of Engineering Science and Computing, 7(7), 14151–14155.
Google Scholar
Nikam, A., Doddamani, A., Deshpande, D., & Manjramkar, S. (2017). Raspberry Pi Based obstacle avoiding robot. International Research Journal of Engineering and Technology, 4(2), 917–919.
Google Scholar
Odondi, O. (2016). Computer Vision through the Raspberry-PI: Counting Objects (graduation project). University of Nairobi, Kenya.
Google Scholar
Sandin, V. (2017). Object detection and analysis using computer vision (graduation project). Chalmers University of Technology, Sweden.
Google Scholar
Senthilkumar, G., Gopalakrishnan, K., & Sathish Kumar, V. (2014). Embedded image capturing system using Raspberry Pi system. International Journal of Emerging Trends and Technology in Computer Science, 3(2), 213–215.
Google Scholar
Authors
Otieno ODONDIUniversity of Nairobi, P.O.Box 30197, GPO, Nairobi Kenya
Authors
Muaayed AL-RAWIAL-Mustansiryia University, Baghdad Iraq
Statistics
Abstract views: 509PDF downloads: 90
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Mohanad ABDULHAMID, Deng PETER, REMOTE HEALTH MONITORING: FALL DETECTION , Applied Computer Science: Vol. 16 No. 1 (2020)
- Mohanad ABDULHAMID, Njagi KINYUA, SOFTWARE FOR RECOGNITION OF CAR NUMBER PLATE , Applied Computer Science: Vol. 16 No. 1 (2020)
Similar Articles
- Pornsiri KHUMLA, Kamthorn SARAWAN, IMPROVING MATERIAL REQUIREMENTS PLANNING THROUGH WEB-BASED: A CASE STUDY THAILAND SMEs , Applied Computer Science: Vol. 19 No. 4 (2023)
- Mohanad ABDULHAMID, Njagi KINYUA, SOFTWARE FOR RECOGNITION OF CAR NUMBER PLATE , Applied Computer Science: Vol. 16 No. 1 (2020)
- Monika KULISZ, EVALUATION OF SAP SYSTEM IMPLEMENTATION IN AN ENTERPRISE OF THE AUTOMOTIVE INDUSTRY – CASE STUDY , Applied Computer Science: Vol. 14 No. 4 (2018)
- Yuriy TRYUS, Nataliya ANTIPOVA, Kateryna ZHURAVEL, Grygoriy ZASPA, INFORMATION TECHNOLOGY OF STOCK INDEXES FORECASTING ON THE BASE OF FUZZY NEURAL NETWORKS , Applied Computer Science: Vol. 13 No. 1 (2017)
- Maria TOMASIKOVA, Frantisek BRUMERČÍK, Aleksander NIEOCZYM, DESIGN AND DYNAMICS MODELING FOR ELECTRIC VEHICLE , Applied Computer Science: Vol. 13 No. 3 (2017)
- Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL, HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Donatien Koulla Moulla, Ernest Mnkandla, Alain Abran, SYSTEMATIC LITERATURE REVIEW OF IOT METRICS , Applied Computer Science: Vol. 19 No. 1 (2023)
- Józef MATUSZEK, Tomasz SENETA, Aleksander MOCZAŁA, FUZZY ASSESSMENT OF MANUFACTURABILITY DESIGN FOR MACHINING , Applied Computer Science: Vol. 15 No. 3 (2019)
- Hamid JAN, Beena HAMID, THE APPLICATION OF FINGERPRINTS AUTHENTICATION IN DISTANCE EDUCATION , Applied Computer Science: Vol. 15 No. 3 (2019)
- Olutayo BOYINBODE, Paul OLOTU, Kolawole AKINTOLA, DEVELOPMENT OF AN ONTOLOGY-BASED ADAPTIVE PERSONALIZED E-LEARNING SYSTEM , Applied Computer Science: Vol. 16 No. 4 (2020)
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.