COMPUTER VISION BASED ON RASPBERRY PI SYSTEM
Mohanad ABDULHAMID
moh1hamid@yahoo.comAl-Hikma University, Karada Kharidge, Baghdad (Iraq)
Otieno ODONDI
University of Nairobi, P.O.Box 30197, GPO, Nairobi (Kenya)
Muaayed AL-RAWI
AL-Mustansiryia University, Baghdad (Iraq)
Abstract
The paper focused on designing and developing a Raspberry Pi based system employing a camera which is able to detect and count objects within a target area. Python was the programming language of choice for this work. This is because it is a very powerful language, and it is compatible with the Pi. Besides, it lends itself to rapid application development and there are online communities that program Raspberry Pi computer using python. The results show that the implemented system was able to detect different kinds of objects in a given image. The number of objects were also generated displayed by the system. Also the results show an average efficiency of 90.206% was determined. The system is therefore seen to be highly reliable.
Keywords:
Computer vision, Raspberry Pi systemReferences
Islam, M. M., Azad, M. S. U., Alam, M. A., & Hassan, A. (2014). Raspberry Pi and image processing based Electronic Voting Machine (EVM). International Journal of Scientific and Engineering Research, 5(1), 1506–1510.
Google Scholar
Jana, S., & Borkar, S. (2017). Autonomous object detection and tracking using Raspberry Pi. International Journal of Engineering Science and Computing, 7(7), 14151–14155.
Google Scholar
Nikam, A., Doddamani, A., Deshpande, D., & Manjramkar, S. (2017). Raspberry Pi Based obstacle avoiding robot. International Research Journal of Engineering and Technology, 4(2), 917–919.
Google Scholar
Odondi, O. (2016). Computer Vision through the Raspberry-PI: Counting Objects (graduation project). University of Nairobi, Kenya.
Google Scholar
Sandin, V. (2017). Object detection and analysis using computer vision (graduation project). Chalmers University of Technology, Sweden.
Google Scholar
Senthilkumar, G., Gopalakrishnan, K., & Sathish Kumar, V. (2014). Embedded image capturing system using Raspberry Pi system. International Journal of Emerging Trends and Technology in Computer Science, 3(2), 213–215.
Google Scholar
Authors
Otieno ODONDIUniversity of Nairobi, P.O.Box 30197, GPO, Nairobi Kenya
Authors
Muaayed AL-RAWIAL-Mustansiryia University, Baghdad Iraq
Statistics
Abstract views: 509PDF downloads: 90
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Mohanad ABDULHAMID, Deng PETER, REMOTE HEALTH MONITORING: FALL DETECTION , Applied Computer Science: Vol. 16 No. 1 (2020)
- Mohanad ABDULHAMID, Njagi KINYUA, SOFTWARE FOR RECOGNITION OF CAR NUMBER PLATE , Applied Computer Science: Vol. 16 No. 1 (2020)
Similar Articles
- Edyta ŁUKASIK, Emilia ŁABUĆ, ANALYSIS OF THE POSSIBILITY OF USING THE SINGULAR VALUE DECOMPOSITION IN IMAGE COMPRESSION , Applied Computer Science: Vol. 18 No. 4 (2022)
- Behnaz ESLAMI, Mehdi HABIBZADEH MOTLAGH, Zahra REZAEI, Mohammad ESLAMI, Mohammad AMIN AMINI, UNSUPERVISED DYNAMIC TOPIC MODEL FOR EXTRACTING ADVERSE DRUG REACTION FROM HEALTH FORUMS , Applied Computer Science: Vol. 16 No. 1 (2020)
- Zaid ALSAYGH, Zohair AL-AMEEN, CONTRAST ENHANCEMENT OF SCANNING ELECTRON MICROSCOPY IMAGES USING A NONCOMPLEX MULTIPHASE ALGORITHM , Applied Computer Science: Vol. 18 No. 2 (2022)
- Marcin TOMCZYK, Barbara BOROWIK, Bohdan BOROWIK, IDENTIFICATION OF THE MASS INERTIA MOMENT IN AN ELECTROMECHANICAL SYSTEM BASED ON WAVELET–NEURAL METHOD , Applied Computer Science: Vol. 14 No. 2 (2018)
- Ihor PYSMENNYI, Anatolii PETRENKO, Roman KYSLYI, GRAPH-BASED FOG COMPUTING NETWORK MODEL , Applied Computer Science: Vol. 16 No. 4 (2020)
- Baldemar ZURITA, Luís LUNA, José HERNÁNDEZ, Federico RAMÍREZ, BOVW FOR CLASSIFICATION IN GEOMETRICS SHAPES , Applied Computer Science: Vol. 14 No. 4 (2018)
- Damian KOLNY, Dawid KURCZYK, Józef MATUSZEK, COMPUTER SUPPORT OF ERGONOMIC ANALYSIS OF WORKING CONDITIONS AT WORKSTATIONS , Applied Computer Science: Vol. 15 No. 1 (2019)
- Tomasz CHMIELEWSKI, Katarzyna ZIELIŃSKA, SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION , Applied Computer Science: Vol. 13 No. 1 (2017)
- Nasir ALAWAD, Afaf ALSEADY, FUZZY CONTROLLER OF MODEL REDUCTION DISTILLATION COLUMN WITH MINIMAL RULES , Applied Computer Science: Vol. 16 No. 2 (2020)
- Saheed A. ADEWUYI, Segun AINA, Adeniran I. OLUWARANTI, A DEEP LEARNING MODEL FOR ELECTRICITY DEMAND FORECASTING BASED ON A TROPICAL DATA , Applied Computer Science: Vol. 16 No. 1 (2020)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.