DESIGN AND DYNAMICS MODELING FOR ELECTRIC VEHICLE
Article Sidebar
Open full text
Issue Vol. 13 No. 3 (2017)
-
UTILISATION OF EVOLUTION ALGORITHM IN PRODUCTION LAYOUT DESIGN
Martin KRAJČOVIČ, Patrik GRZNÁR5-18
-
DESIGN AND DYNAMICS MODELING FOR ELECTRIC VEHICLE
Maria TOMASIKOVA, Frantisek BRUMERČÍK, Aleksander NIEOCZYM19-31
-
SIMPLIFIED GRAPHICAL DOMAIN-SPECIFIC LANGUAGES FOR THE MOBILE DOMAIN – PERSPECTIVES OF LEARNABILITY BY NONTECHNICAL USERS
Kamil ŻYŁA32-40
-
A MODEL OF KNOWLEDGE ACQUISITION IN THE MAINTENANCE DEPARTMENT OF A PRODUCTION COMPANY
Małgorzata ŚLIWA, Ewelina KOSICKA41-54
-
NEW EXTRUSION PROCESS FOR PRODUCING TWIST DRILLS USING SPLIT DIES
Tomasz BULZAK, Zbigniew PATER, Janusz TOMCZAK55-63
-
NUMERICAL ANALYSIS OF SPINAL LOADS IN SPONDYLOLISTHESIS TREATMENT USING PEDICLE SCREWS – PRELIMINARY RESEARCH
Jarosław ZUBRZYCKI, Natalia SMIDOVA, Jakub LITAK, Andrei AUSIYEVICH64-76
-
INFLUENCE OF HOMOGENIZATION METHODS IN PREDICTION OF STRENGTH PROPERTIES FOR WPC COMPOSITES
Wieslaw FRĄCZ, Grzegorz JANOWSKI77-89
-
CREATING MARKETING KNOWLEDGE ABOUT THE CONSUMER IN THE CONTEXT OF THE DEVELOPMENT OF INTERNET TOOLS
Krystyna MAZUREK-ŁOPACIŃSKA, Magdalena SOBOCIŃSKA90-101
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
frantisek.brumercik@fstroj.uniza.sk
Abstract
This paper descript software for vehicle simulation and mathematical models that describe the motion of the vehicle. A dynamic simulation model of vehicle was developed using Matlab/Simulink and SimDriveline toolbox. The model has a configurable structure that is suitable to simulation with multiple levels. The powertrain system model developed using Simulink and SimDrivline could also be used as a generic, modular and flexible vehicle modeling platform to support the integration of powertrain design and control system optimization.
Keywords:
References
Fang, Ch., Cao, Z., Ektesabi, M., Kapoor, A., & Sayem, A. (2013). Driveline modelling analysis for active driveability control. In Systems, Process & Control (ICSPC), 2013 IEEE Conference. Kuala Lumpur, Malaysia: IEEE. https://doi.org/10.1109/SPC.2013.6735117 DOI: https://doi.org/10.1109/SPC.2013.6735117
Jeong, H., & Lee, K. (2000). Friction coefficient, torque estimation, smooth shift control law for an automatic power transmission. KSME International Journal, 14(5), 508–517. https://doi.org/10.1007/BF03185653 DOI: https://doi.org/10.1007/BF03185653
Mousavi, M., Saman, R., Pakniyat, A., & Boulet, B. (2014). Dynamic modeling and controller design for a seamless two-speed transmission for electric vehicles. Control Applications (CCA), 2014 IEEE Conference. Juan Les Antibes, France: IEEE. https://doi.org/10.1109/CCA.2014.6981411 DOI: https://doi.org/10.1109/CCA.2014.6981411
Kucera, L., Lukac, M., Jurak, L., & Brumercik, F. (2009). Hydromechanical automatic transmission. Communications, 11(2), 33–35. DOI: https://doi.org/10.26552/com.C.2009.2.33-35
Pacejka, H. (2005). Tyre and vehicle dynamics. Elsevier.
Pawlus, W., Hovland, G., & Choux, M. (2015). Drivetrain design optimization for electrically actuated systems via mixed integer programming. In Industrial Electronics Society, IECON 2015 – 41st Annual Conference of the IEEE. Yokohama, Japan: IEEE. https://doi.org/10.1109/IECON.2015.7392307 DOI: https://doi.org/10.1109/IECON.2015.7392307
Cheng, R., Dong, J., & Dong, Z. (2013). Modelling and simulation of a multiple-regime plug-in hybrid electric vehicle. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (1, pp. V001T01A009). Portland, Oregon, USA. https://doi.org/10.1115/DETC2013-13619 DOI: https://doi.org/10.1115/DETC2013-13619
Tomasikova, M., Nieoczym, A., & Brumercik, F. (2015). Vehicle drivetrain modelling. In Transcom Proceedings 2015, 11-th European Conference of Young Researches and Scientists (pp.265-268). Zilina, Slovak Republic.
Tomasikova, M., Brumercik, F., & Nieoczym, A. (2015). Vehicle simulation model creation. LOGI, Scientific Journal on Transport and Logistics, 6(1), 130–136.
Wallmark, O., & Nybacka M. (2014). Design and implementation of an experimental research and concept demonstration vehicle. In Vehicle Power and Propulsion Conference (VPPC), 2014 IEEE. Coimbra, Portugal: IEEE. https://doi.org/10.1109/VPPC.2014.7007042 DOI: https://doi.org/10.1109/VPPC.2014.7007042
Zhou, J., Shen, X., & Liu, D. (2014). Modeling and simulation for electric vehicle powertrain controls. In Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo. Beijing, China: IEEE. https://doi.org/10.1109/ITEC-P.2014.6940824
Article Details
Abstract views: 593
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
