HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS
Article Sidebar
Open full text
Issue Vol. 18 No. 4 (2022)
-
APPLICATION OF GILLESPIE ALGORITHM FOR SIMULATING EVOLUTION OF FITNESS OF MICROBIAL POPULATION
Jarosław GIL, Andrzej POLAŃSKI5-15
-
HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS
Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL16-27
-
DETERMINING THE DEGREE OF PLAYER ENGAGEMENT IN A COMPUTER GAME WITH ELEMENTS OF A SOCIAL CAMPAIGN USING COGNITIVE NEUROSCIENCE TECHNIQUES
Konrad BIERCEWICZ, Mariusz BORAWSKI, Anna BORAWSKA, Jarosław DUDA28-52
-
ANALYSIS OF THE POSSIBILITY OF USING THE SINGULAR VALUE DECOMPOSITION IN IMAGE COMPRESSION
Edyta ŁUKASIK, Emilia ŁABUĆ53-67
-
PREDICTION OF THE COMPRESSIVE STRENGTH OF ENVIRONMENTALLY FRIENDLY CONCRETE USING ARTIFICIAL NEURAL NETWORK
Monika KULISZ, Justyna KUJAWSKA, Zulfiya AUBAKIROVA, Gulnaz ZHAIRBAEVA, Tomasz WAROWNY68-81
-
NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES
Łukasz SEMKŁO, Łukasz GIERZ82-95
-
A COUGH-BASED COVID-19 DETECTION SYSTEM USING PCA AND MACHINE LEARNING CLASSIFIERS
Elmehdi BENMALEK, Jamal EL MHAMDI, Abdelilah JILBAB, Atman JBARI96-115
-
IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS
Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA116-129
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
Rainfall prediction is one of the most challenging task faced by researchers over the years. Many machine learning and AI based algorithms have been implemented on different datasets for better prediction purposes, but there is not a single solution which perfectly predicts the rainfall. Accurate prediction still remains a question to researchers. We offer a machine learning-based comparison evaluation of rainfall models for Kashmir province. Both local geographic features and the time horizon has influence on weather forecasting. Decision trees, Logistic Model Trees (LMT), and M5 model trees are examples of predictive models based on algorithms. GWLM-NARX, Gradient Boosting, and other techniques were investigated. Weather predictors measured from three major meteorological stations in the Kashmir area of the UT of J&K, India, were utilized in the models. We compared the proposed models based on their accuracy, kappa, interpretability, and other statistics, as well as the significance of the predictors utilized. On the original dataset, the DT model delivers an accuracy of 80.12 percent, followed by the LMT and Gradient boosting models, which produce accuracy of 87.23 percent and 87.51 percent, respectively. Furthermore, when continuous data was used in the M5-MT and GWLM-NARX models, the NARX model performed better, with mean squared error (MSE) and regression value (R) predictions of 3.12 percent and 0.9899 percent in training, 0.144 percent and 0.9936 percent in validation, and 0.311 percent and 0.9988 percent in testing.
Keywords:
References
Adnan, R. M., Petroselli, A., Heddam, S., Santos, C. A. G., & Kisi, O. (2021). Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach. Natural Hazards, 105(3), 2987–3011. DOI: https://doi.org/10.1007/s11069-020-04438-2
Afolayan, H. A., Ojokoh, B. A., & Falaki, S. O. (2016). Comparative analysis of rainfall prediction models using neural network and fuzzy logic. International Journal of Soft Computing and Engineering, 5(6), 4–7.
Aftab, S., Ahmad, M., Hameed, N., Bashir, M. S., Ali, I., & Nawaz, Z. (2018). Rainfall prediction using data mining techniques: A systematic literature review. International journal of advanced computer science and applications, 9(5), 143–150. DOI: https://doi.org/10.14569/IJACSA.2018.090518
Aguasca-Colomo, R., Castellanos-Nieves, D., & Méndez, M. (2019). Comparative Analysis of Rainfall Prediction Models Using Machine Learning in Islands with Complex Orography: Tenerife Island. Applied Sciences, 9(22), 4931. https://doi.org/10.3390/app9224931 DOI: https://doi.org/10.3390/app9224931
Altaf, I., Butt, M. A., & Zaman, M. (2021). A Pragmatic Comparison of Supervised Machine Learning Classifiers for Disease Diagnosis. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 1515–1520). IEEE. https://doi.org/10.1109/ICIRCA51532.2021.9544582 DOI: https://doi.org/10.1109/ICIRCA51532.2021.9544582
Banday, I.R., Zaman, M., Quadri, S.M.K., Fayaz, S.A., Butt, M.A. (2022). Big data in academia: A proposed framework for improving students performance. Revue d'Intelligence Artificielle, Vol. 36, No. 4, pp. 589–595. https://doi.org/10.18280/ria.360411 DOI: https://doi.org/10.18280/ria.360411
Barrera–Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., & Akanbi, L. A. (2022). Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning with Applications, 7, 100204. https://doi.org/10.1016/j.mlwa.2021.100204 DOI: https://doi.org/10.1016/j.mlwa.2021.100204
Dhamodaran, S., & Lakshmi, M. (2021). Comparative analysis of spatial interpolation with climatic changes using inverse distance method. Journal of Ambient Intelligence and Humanized Computing, 12(6), 6725–6734. https://doi.org/10.1007/s12652-020-02296-1 DOI: https://doi.org/10.1007/s12652-020-02296-1
Fayaz, S. A., Kaul, S., Zaman, M., & Butt, M. A. (2022). An adaptive gradient boosting model for the prediction of rainfall using ID3 as a base estimator. Revue d'Intelligence Artificielle, 36(2), 241–250. https://doi.org/10.18280/ria.360208 DOI: https://doi.org/10.18280/ria.360208
Fayaz, S. A., Zaman, M., & Butt, M. A. (2021a). To ameliorate classification accuracy using ensemble distributed decision tree (DDT) vote approach: An empirical discourse of geographical data mining. Procedia Computer Science, 184, 935–940. https://doi.org/10.1016/j.procs.2021.03.116 DOI: https://doi.org/10.1016/j.procs.2021.03.116
Fayaz, S. A., Zaman, M., & Butt, M. A. (2021b). An application of logistic model tree (LMT) algorithm to ameliorate Prediction accuracy of meteorological data. International Journal of Advanced Technology and Engineering Exploration, 8(84), 1424–40. DOI: https://doi.org/10.19101/IJATEE.2021.874586
Fayaz, S. A., Zaman, M., & Butt, M. A. (2021c). A hybrid adaptive grey wolf Levenberg-Marquardt (GWLM) and nonlinear autoregressive with exogenous input (NARX) neural network model for the prediction of rainfall. International Journal of Advanced Technology and Engineering Exploration, 9(89), 509–522. https://doi.org/10.19101/IJATEE.2021.874647 DOI: https://doi.org/10.19101/IJATEE.2021.874647
Fayaz, S. A., Zaman, M., & Butt, M. A. (2022a). Numerical and Experimental Investigation of Meteorological Data Using Adaptive Linear M5 Model Tree for the Prediction of Rainfall. Review of Computer Engineering Research, 9(1), 1–12. DOI: https://doi.org/10.18488/76.v9i1.2961
Fayaz, S. A., Zaman, M., & Butt, M. A. (2022b). Knowledge Discovery in Geographical Sciences—A Systematic Survey of Various Machine Learning Algorithms for Rainfall Prediction. In International Conference on Innovative Computing and Communications (pp. 593–608). Springer. DOI: https://doi.org/10.1007/978-981-16-2597-8_51
Fayaz, S. A., Zaman, M., & Butt, M. A. (2022c). Performance Evaluation of GINI Index and Information Gain Criteria on Geographical Data: An Empirical Study Based on JAVA and Python. In International Conference on Innovative Computing and Communications (pp. 249–265). Springer. DOI: https://doi.org/10.1007/978-981-16-3071-2_22
Fayaz, S. A., Zaman, M., Kaul, S., & Butt, M. A. (2022). Is Deep Learning on Tabular Data Enough? An Assessment. International Journal of Advanced Computer Science and Applications, 13(4), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130454 DOI: https://doi.org/10.14569/IJACSA.2022.0130454
Kaul, S., Fayaz, S. A., Zaman, M., & Butt, M. A. (2022). Is decision tree obsolete in its original form? A burning debate. Revue d'Intelligence Artificielle, 36(1), 105–113. DOI: https://doi.org/10.18280/ria.360112
Kaul, S., Zaman, M., Fayaz, S. A., & Butt, M. A. (2023). Performance Stagnation of Meteorological Data of Kashmir. In International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems (vol. 471). Springer. https://doi.org/10.1007/978-981-19-2535-1_63 DOI: https://doi.org/10.1007/978-981-19-2535-1_63
Mohd, R., Butt, M. A., & Baba, M. Z. (2020). GWLM–NARX: grey wolf levenberg–marquardt-based neural network for rainfall prediction. Data Technologies and Applications, 54(1), 85–102. https://doi.org/10.1108/DTA-08-2019-0130. 2020. DOI: https://doi.org/10.1108/DTA-08-2019-0130
Mohd, R., Butt, M. A., & Baba, M. Z. (2022). Grey Wolf-Based Linear Regression Model for Rainfall Prediction. International Journal of Information Technologies and Systems Approach, 15(1), 1-18. DOI: https://doi.org/10.4018/IJITSA.290004
Niu, J., & Zhang, W. (2015). Comparative analysis of statistical models in rainfall prediction. In 2015 IEEE International Conference on Information and Automation (pp. 2187-2190). IEEE. DOI: https://doi.org/10.1109/ICInfA.2015.7279650
Pucheta, J. A., Cristian, M. R. R., Martín, R. H., Carlos, A. S., Patiño, H. D., & Benjamín, R. K. (2009). A feedforward neural networks-based nonlinear autoregressive model for forecasting time series. Comput y Sistemas, 14(4), 423–435.
Rezaie-balf, M., Naganna, S. R., Ghaemi, A., & Deka, P. C. (2017). Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. Journal of hydrology, 553, 356–373. DOI: https://doi.org/10.1016/j.jhydrol.2017.08.006
Singh, P., & Borah, B. (2013). Indian summer monsoon rainfall prediction using artificial neural network. Stochastic Environmental Research and Risk Assessment, 27(7), 1585–1599. DOI: https://doi.org/10.1007/s00477-013-0695-0
Singh, U., Chauhan, S., Krishnamachari, A., & Vig, L. (2015). Ensemble of deep long short term memory networks for labelling origin of replication sequences. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp.1–7). IEEE. http://dx.doi.org/10.1109/DSAA.2015.7344871 DOI: https://doi.org/10.1109/DSAA.2015.7344871
Wu, C., & Chau, K.-W. (2013). Prediction of rainfall time series using modular soft computing methods. Engineering Applications of Artificial Intelligence, 26(3), 997–1007. https://doi.org/10.1016/j.engappai.2012.05.023 DOI: https://doi.org/10.1016/j.engappai.2012.05.023
Xiang, Y., Gou, L., He, L., Xia, S., & Wang, W. (2018). A SVR–ANN combined model based on ensemble EMD for rainfall prediction. Applied Soft Computing, 73, 874–883. https://doi.org/10.1016/j.asoc.2018.09.018 DOI: https://doi.org/10.1016/j.asoc.2018.09.018
Yang, Y., Lin, H., Guo, Z., & Jiang, J. (2007). A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis. Comput Geosci, 33(1), 20–30. DOI: https://doi.org/10.1016/j.cageo.2006.05.010
Zaman, M., & Butt, M. A. (2012). Information translation: a practitioners approach. In World Congress on Engineering and Computer Science (WCECS).
Zaz, S. N., Romshoo, S. A., Krishnamoorthy, R. T., & Viswanadhapalli, Y. (2019). Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events. Atmospheric Chemistry and Physics, 19(1), 15-37. https://doi.org/10.5194/acp-19-15-2019 DOI: https://doi.org/10.5194/acp-19-15-2019
Article Details
Abstract views: 613
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
