DEVELOPMENT OF SOFTWARE FOR IDENTIFICATION OF FILAMENTS USED IN 3D PRINTING TECHNOLOGY

Sylwester KORGA

s.korga@pollub.pl
* Lublin University of Technology, The Faculty of Electrical Engineering and Computer Science, Nadbystrzycka 38A, 20-618 Lublin (Poland)

Marcin BARSZCZ


Lublin University of Technology, The Faculty of Electrical Engineering and Computer Science, Nadbystrzycka 38A, 20-618 Lublin (Poland)

Krzysztof DZIEDZIC


* Lublin University of Technology, The Faculty of Electrical Engineering and Computer Science, Nadbystrzycka 38A, 20-618 Lublin (Poland)

Abstract

The aim of the work was to develop a computer program that allows identification of polymer materials that are used in 3D printing technology. The computer program was made using the algorithm that concerns the method of thermal polymer degradation. Filament samples were prepared for this purpose and then set on fire. The collected data on the flammability of polymers was used in an algorithm that can make a decision to identify the name of the polymer. The software can be used to identify polymer prints used for 3D printing technology. The computer program supports the process of recycling plastics and supports ecological work.


Keywords:

programming, LabView, polymers, printing 3D

Błędzki, A. K., & Faruk, O. (2006). Influence of Processing Temperature on Microcellular InjectionMoulded Wood-Polypropylene Composites. Macromolecular Materials and Engineering, 291(10), 1226–1232.
DOI: https://doi.org/10.1002/mame.200600210   Google Scholar

Błędzki, A. K., & Kardasz, D. (1998). Możliwości szybkiej identyfikacji tworzyw sztucznych w procesie recykling. Polimery, 43(2), 79–87.
  Google Scholar

Broniewski, T., Kapko, J., & Płaczek, J. (2000). Metody badań i ocena właściwości tworzyw sztucznych. Warszawa: WNT.
  Google Scholar

Garbacz, T., & Dulebova, L. (2013). Porophors during the extrusion process. Chemistry and Chemical Technology, 7(1), 113–118. https://doi.org/10.23939/chcht07.01.113
DOI: https://doi.org/10.23939/chcht07.01.113   Google Scholar

Garbarczyk, E., Józefowic, K., & Rybarczyk, A. (2014). Technologia druku 3d na zajęciach laboratoryjnych. Poznan University of Technology Academic Journals. Electrical Engineering, 80, 245–251.
  Google Scholar

Okamoto, K. T. (2003). Microcellular Processing. Cincinnati: Hanser Gardner Inc.
  Google Scholar

Klepka, T. (2014). Nowoczesne materiały polimerowe i ich przetwórstwo. Część 1. Lublin: Wydawnictwo Politechniki Lubelskiej.
  Google Scholar

Korga, S., & Flis, M. (2018). Analiza najczęstszych niepowodzeń występujących podczas procesu druku addytywnego. In B. Buraczyńska & A. Kuczmaszewska (Eds.), Młody inżynier XXI wieku (pp. 35–45). Lublin: Wydawnictwo Politechniki Lubelskiej.
  Google Scholar

Matuana, L. M., Park, C. B., & Balatinecz, J. J. (1998). Structures and mechanical properties of microcellular foamed polyvinyl chloride. Cellular Polymers, 17(1), 1–16.
  Google Scholar

Mroziński, A. (2010). Problemy recyklingu tworzyw polimerowych. Inżynieria i Aparatura Chemiczna, 49(5), 89–90.
  Google Scholar

Pearce, J. M., Morris Blair, C., Laciak, K. J., Andrews, R, Nosrat, A., & Zelenika-Zovko, I. (2010). 3-D Printing of Open Source Appropriate Technologies for Self-Directed Sustainable Development. Journal of Sustainable Development, 3(4), 17–29. https://doi.org/10.5539/jsd.v3n4p17
DOI: https://doi.org/10.5539/jsd.v3n4p17   Google Scholar

Przygodzki, W., Włochowicz, A., & Janowska, G. (2007). Palność polimerów i materiałów polimerowych. Warszawa: WNT.
  Google Scholar

Rabek, J. F. (2013). Polimery. Otrzymywanie, metody badawcze, zastosowanie. Warszawa: Wydawnictwo Naukowe PWN.
  Google Scholar

Rosato, D. V., Rosato, M. G., & Schott, N. R. (2010). Plastics Technology Handbook. Volume 2 – Manufacturing, Composites, Tooling, Auxiliaries. Highland Park: Momentum Press.
  Google Scholar

Targowski, P., Sylwestrzak, M., & Bajraszewski, T. (2009). Środowisko LabVIEW – własności i przykłady zastosowań. Postępy Fizyki, 60(6), 255–256.
  Google Scholar

Wittbrodt, B. T., Glover, A. G., Laureto, J., Anzalone, G. C., Oppliger, D., Irwin, J. L., & Pearce, J. M. (2013). Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics, 23(6), 713–726. doi:10.1016/j.mechatronics.2013.06.002
DOI: https://doi.org/10.1016/j.mechatronics.2013.06.002   Google Scholar

Wróblewska-Krepsztul, J., Michalska – Pożoga, I., Szczepiński, M., & Szczepiński, M. (2017). Biodegradacja – atrakcyjna alternatywa dla obecnych technik utylizacji odpadów tworzyw polimerowych. Przetwórstwo tworzyw, 23(6), 579–584.
  Google Scholar

Download


Published
2019-03-30

Cited by

KORGA, S. ., BARSZCZ, M., & DZIEDZIC, K. (2019). DEVELOPMENT OF SOFTWARE FOR IDENTIFICATION OF FILAMENTS USED IN 3D PRINTING TECHNOLOGY. Applied Computer Science, 15(1), 74–83. https://doi.org/10.23743/acs-2019-06

Authors

Sylwester KORGA 
s.korga@pollub.pl
* Lublin University of Technology, The Faculty of Electrical Engineering and Computer Science, Nadbystrzycka 38A, 20-618 Lublin Poland

Authors

Marcin BARSZCZ 

Lublin University of Technology, The Faculty of Electrical Engineering and Computer Science, Nadbystrzycka 38A, 20-618 Lublin Poland

Authors

Krzysztof DZIEDZIC 

* Lublin University of Technology, The Faculty of Electrical Engineering and Computer Science, Nadbystrzycka 38A, 20-618 Lublin Poland

Statistics

Abstract views: 78
PDF downloads: 4


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.