EFFICIENT NUMERICAL MODELLING OF FUNCTIONALLY GRADED SHELL MECHANICAL BEHAVIOR
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2019)
-
VERIFICATION OF ACCURACY AND COST OF USE METHODS OF QUALITY ASSESSMENT OF IMPLEMENTATION OF DESIGN PATTERNS
Rafał WOJSZCZYK5-17
-
TECHNIQUES OF GENERATING SCHEDULES FOR THE PROBLEM OF FINANCIAL OPTIMIZATION OF MULTI-STAGE PROJECT
Marcin KLIMEK18-35
-
APPLICATION OF ACOUSTIC SIGNAL PROCESSING METHODS IN DETECTING DIFFERENCES BETWEEN OPEN AND CLOSED KINEMATIC CHAIN MOVEMENT FOR THE KNEE JOINT
Robert KARPIŃSKI, Anna MACHROWSKA, Marcin MACIEJEWSKI36-48
-
COMPUTER SUPPORT OF ERGONOMIC ANALYSIS OF WORKING CONDITIONS AT WORKSTATIONS
Damian KOLNY, Dawid KURCZYK, Józef MATUSZEK49-61
-
ENCAPSULATION OF IMAGE METADATA FOR EASE OF RETRIEVAL AND MOBILITY
Nancy WOODS, Charles ROBERT62-73
-
DEVELOPMENT OF SOFTWARE FOR IDENTIFICATION OF FILAMENTS USED IN 3D PRINTING TECHNOLOGY
Sylwester KORGA, Marcin BARSZCZ, Krzysztof DZIEDZIC74-83
-
EFFICIENT NUMERICAL MODELLING OF FUNCTIONALLY GRADED SHELL MECHANICAL BEHAVIOR
Sana KOUBAA, Jamel MARS, Fakhreddine DAMMAK84-94
-
IT TOOLS SUPPORTING EMPLOYEE MANAGEMENT IN A HIGH-TECH ENTERPRISE
Aneta KARASEK95-103
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
Numerical analysis of the static bending and free vibration mechanical behavior of FGM are performed using the UMAT-USDFLD subroutines in ABAQUS software. Different combinations of geometries, mechanical loading and boundary conditions are adopted. The material properties according to the coordinates of the integration points are defined in the developed numerical model. The First Order Deformation Theory is used for thin and moderately thick FG shells analysis. The accuracy and the robustness of the numerical model are illustrated through the solution of several non trivial structure problems. The proposed numerical procedure is significantly efficient from the computational point of view.
Keywords:
References
Abrate, S. A. (2006). Free vibration, buckling, and static deflections of functionally graded plates. Journal of Composites Science and Technology, 66, 2383–2394. https://doi.org/10.1016/j.compscitech.2006.02.032 DOI: https://doi.org/10.1016/j.compscitech.2006.02.032
Alipour, M. M., & Shariyat, M. (2012). An elasticity-equilibrium-based zigzag theory for axisymmetric bending and stress analysis of the functionally graded circular sandwich plates, using a maclaurin-type series solution. Eur J Mech A/Solids, 34, 78–101. https://doi.org/10.1016/j.euromechsol.2011.12.004 DOI: https://doi.org/10.1016/j.euromechsol.2011.12.004
Apetre, N. A., Sanka, B. V., & Ambur, D. R. (2006). Low-velocity impact response of sandwich beams with functionally graded core. International Journal of Solids and Structures, 43, 2479–2496. https://doi.org/10.1016/j.ijsolstr.2005.06.003 DOI: https://doi.org/10.1016/j.ijsolstr.2005.06.003
Chung, Y. L. & Chen, W. T. (2007). The flexibility of functionally graded material plates subjected to uniform load. Journal of Mechanics of Materials and Structures, 2, 63–86. https://doi.org/10.2140/jomms.2007.2.63 DOI: https://doi.org/10.2140/jomms.2007.2.63
Draiche, K., Derras, M., Kaci, A. & Tounsi, A. (2013). Non-linear analysis of functionally graded plates of cylindrical bending based on a new refined shear deformation theory. Journal of theoretical and applied mechanics, 51, 339– 348.
Frikha, A. & Dammak, F. (2017). Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element. Computer Methods in Applied Mechanics and Engineering, 315, 1– 24. https://doi.org/10.1016/j.cma.2016.10.017 DOI: https://doi.org/10.1016/j.cma.2016.10.017
Frikha, A., Wali, M., Hajlaoui, A & Dammak, F. (2016a). Dynamic response of functionally graded material shells with a discrete double directors shell element. Composite Structures, 154, 385–395. https://doi.org/10.1016/j.compstruct.2016.07.021 DOI: https://doi.org/10.1016/j.compstruct.2016.07.021
Frikha, A., Wali, M., Hajlaoui, A & Dammak, F. (2016b). A new higher order c0 mixed beam element for fgm beams analysis. Composites part B, 106, 181– 189. https://doi.org/10.1016/j.compositesb.2016.09.024 DOI: https://doi.org/10.1016/j.compositesb.2016.09.024
GhannadPour, S. A. M. & Alinia, M. M. (2006). Large deflection behavior of functionally graded plates under pressure loads. Journal of composite structures, 75, 67–71. https://doi.org/10.1016/j.compstruct.2006.04.004 DOI: https://doi.org/10.1016/j.compstruct.2006.04.004
Ghanned, M. & Nejad, M. Z. (2013). Elastic solution of pressurized clamped-clamped thick cylindrical shelles made of functionally graded materials. Journal of theoretical and applied mechanics, 51, 1067–1079. DOI: https://doi.org/10.5755/j01.mech.18.6.3158
Lin, F. & Xiang, Y. (2014). Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Applied Mathematical Modelling, 38, 3741–3754. https://doi.org/10.1016/j.apm.2014.02.008 DOI: https://doi.org/10.1016/j.apm.2014.02.008
Mao, Y., Fu, Y., & Fang, D. (2013). Interfacial damage analysis of shallow spherical shell with fgm coating under low velocity impact. International Journal of Mechanical Sciences, 71, 30–40. https://doi.org/10.1016/j.ijmecsci.2013.03.004 DOI: https://doi.org/10.1016/j.ijmecsci.2013.03.004
Nie, G. & Zhong, Z. (2007). Axisymmetric bending of two-directional functionally graded circular and annular plates. Acta Mechanica Solida Sinica, 20, 289– 295. https://doi.org/10.1007/s10338-007-0734-9 DOI: https://doi.org/10.1007/s10338-007-0734-9
Praveen, G. N. & Reddy, J. N. (1997). Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures, 35, 4457–4476. https://doi.org/10.1016/S0020-7683(97)00253-9 DOI: https://doi.org/10.1016/S0020-7683(97)00253-9
Shariyat, M. & Alipour, M. M. (2014). A novel shear correction factor for stress and modal analyses of annular fgm plates with non-uniform inclined tractions and nonuniform elastic foundations. International Journal of Mechanical Sciences, 87, 60–71. DOI: https://doi.org/10.1016/j.ijmecsci.2014.05.032
Simo, J. C., Fox, D. D. & Rifai, M. S. (1989). On a stress resultant geometrically exact shell model. part II: The linear theory; Computational aspects. Computer Methods in Applied Mechanics and Engineering, 73, 53–92. https://doi.org/10.1016/0045-7825(89)90098-4 DOI: https://doi.org/10.1016/0045-7825(89)90098-4
Thai, H. T., & Kim, S. E. (2015). A review of theories for the modeling and analysis of functionally graded plates and shells. Composite Structures, 128, 70–86. https://doi.org/10.1016/j.compstruct.2015.03.010 DOI: https://doi.org/10.1016/j.compstruct.2015.03.010
Tornabene, F. (2009). Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Engrg, 198, 2911–2935. https://doi.org/10.1016/j.cma.2009.04.011 DOI: https://doi.org/10.1016/j.cma.2009.04.011
Wali, M., Hajlaoui, A. & Dammak, F. (2014). Discrete double directors shell element for the functionally graded material shell structures analysis. Computer Methods in Applied Mechanics and Engineering, 278, 388–403. https://doi.org/10.1016/j.cma.2014.05.011 DOI: https://doi.org/10.1016/j.cma.2014.05.011
Wali, M., Hentati, T., Jarraya, A., & Dammak, F. (2015). Free vibration analysis of fgm shell structures with a discrete double directors shell element. Composite Structures, 125, 295–303. https://doi.org/10.1016/j.compstruct.2015.02.032 DOI: https://doi.org/10.1016/j.compstruct.2015.02.032
Yanga. J., & Shen, H. S. (2003). Non-linear analysis of functionally graded plates under transverse and in-plane loads. International Journal of Non- Linear Mechanics, 38(4), 467–482. https://doi.org/10.1016/S0020-7462(01)00070-1 DOI: https://doi.org/10.1016/S0020-7462(01)00070-1
Zenkour, A. M. (2006). Generalized shear deformation theory for bending analysis of functionally graded plates. Applied Mathematical Modelling, 30 (1), 67–84. https://doi.org/10.1016/j.apm.2005.03.009 DOI: https://doi.org/10.1016/j.apm.2005.03.009
Article Details
Abstract views: 200
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
