IMPLEMENTING THE FADE-IN AUDIO EFFECT FOR REAL-TIME COMPUTING
Lucian LUPŞA-TĂTARU
lupsa@programmer.netTransilvania University of Braşov, Faculty of Electrical Engineering and Computer Science, Department of Electrical Engineering and Applied Physics, Bd. Eroilor No. 29, Braşov, RO-500036 (Romania)
Abstract
Audio fading is performed in order to smoothly modify over time the level of an audio signal. In particular, the fade-in audio effect designates a gradually increase in the audio volume, starting from silence. In practice, audio fading is mostly carried out within audio editors i.e. in off-line mode by employing various transcendental functions to enforce the fade profile. Taking into account the increasing demand for interactive media services requiring real-time audio processing, the present approach advances an effective method of constructing the audio fade-in shape with a view to real-time computing. The paper encompasses plain and straightforward implementations in pure JavaScript, prepared precisely to validate the method of audio volume processing proposed here.
Keywords:
audio effects, audio fade-in, real-time processing, HTML5, web appsReferences
Case, A. U. (2007). Sound FX: Unlocking the Creative Potential of Recording Studio Effects. Burlington, MA, USA: Focal Press.
Google Scholar
Corey, J. (2017). Audio Production and Critical Listening: Technical Ear Training. New York, NY, USA: Routledge.
DOI: https://doi.org/10.4324/9781315727813
Google Scholar
Devlin, I. (2012). HTML5 Multimedia: Develop and Design. Berkeley, CA, USA: Peachpit Press.
Google Scholar
Jackson, W. (2015). Digital Audio Editing Fundamentals: Get started with digital audio development and distribution. Berkeley, CA, USA: Apress Media. https://doi.org/10.1007/978-1-4842-1648-4
DOI: https://doi.org/10.1007/978-1-4842-1648-4
Google Scholar
Jacobs, I., Jaffe, J., & Le Hegaret, P. (2012). How the open web platform is transforming industry. IEEE Internet Computing, 16(6), 82-86. doi:10.1109/MIC.2012.134
DOI: https://doi.org/10.1109/MIC.2012.134
Google Scholar
Langford, S. (2014). Digital Audio Editing: Correcting and Enhancing Audio in Pro Tools, Logic Pro, Cubase, and Studio One. Burlington, MA, USA: Focal Press.
Google Scholar
Lupsa-Tataru, L. (2017). Shaping the fade-in audio effect with a view to JavaScript implementation. Journal of Computations & Modelling, 7(4), 111–126.
Google Scholar
Lupsa-Tataru, L. (2018). Novel technique of customizing the audio fade-out shape. Applied Computer Science, 14(3), 5–14. https://doi.org/10.23743/acs-2018-17
Google Scholar
Panagakis, Y., Kotropoulos, C. L., & Arce, G. R. (2014). Music genre classification via joint sparse low-rank representation of audio features. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12), 1905–1917. https://doi.org/10.1109/TASLP.2014.2355774
DOI: https://doi.org/10.1109/TASLP.2014.2355774
Google Scholar
Potter, K. (2002). Four Musical Minimalists: La Monte Young, Terry Riley, Steve Reich, Philip Glass (Series: Music in the Twentieth Century). Cambridge, UK: Cambridge University Press.
Google Scholar
Powers, S. (2011). HTML5 Media. Sebastopol, CA, USA: O’Reilly Media.
Google Scholar
Reiss, J. D., & McPherson, A. (2015). Audio Effects: Theory, Implementation and Application. Boca Raton, FL, USA: CRC Press.
DOI: https://doi.org/10.1201/b17593
Google Scholar
Schroder, C. (2011). The Book of Audacity: Record, Edit, Mix, and Master with the Free Audio Editor. San Francisco, CA, USA: No Starch Press.
Google Scholar
WebPlat WG (Web Platform Working Group). (2017). HTML 5.2. W3C Recommendation. W3C technical reports index: https://www.w3.org/TR/2017/REC-html52-20171214
Google Scholar
Authors
Lucian LUPŞA-TĂTARUlupsa@programmer.net
Transilvania University of Braşov, Faculty of Electrical Engineering and Computer Science, Department of Electrical Engineering and Applied Physics, Bd. Eroilor No. 29, Braşov, RO-500036 Romania
Statistics
Abstract views: 182PDF downloads: 15
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Lucian LUPŞA-TĂTARU, CUSTOMIZING AUDIO FADES WITH A VIEW TO REAL-TIME PROCESSING , Applied Computer Science: Vol. 15 No. 4 (2019)
- Lucian LUPŞA-TĂTARU, NOVEL TECHNIQUE OF CUSTOMIZING THE AUDIO FADE-OUT SHAPE , Applied Computer Science: Vol. 14 No. 3 (2018)
Similar Articles
- Paweł BAŁON, Edward REJMAN, Robert SMUSZ, Janusz SZOSTAK, Bartłomiej KIEŁBASA, HIGH SPEED MILLING IN THIN-WALLED AIRCRAFT STRUCTURES , Applied Computer Science: Vol. 14 No. 2 (2018)
- Damian KRASKA, Tomasz TRZEPIECIŃSKI, FINITE ELEMENT BASED PREDICTION OF DEFORMATION IN SHEET METAL FORMING PROCESS , Applied Computer Science: Vol. 14 No. 3 (2018)
- Sebastian BIAŁASZ, INJECTION SIMULATION FOR THE MOLD PROCESS IN THE MEDICAL INDUSTRY , Applied Computer Science: Vol. 14 No. 3 (2018)
- Sebastian BIAŁASZ, Ramon PAMIES, NUMERICAL SIMULATION OF THE DESIGN OF EXTRUSION PROCESS OF POLYMERIC MINI-TUBES , Applied Computer Science: Vol. 14 No. 3 (2018)
- Irena NOWOTYŃSKA, Stanisław KUT, COMPARATIVE ANALYSIS OF THE IMPACT OF DIE DESIGN ON ITS LOAD AND DISTRIBUTION OF STRESS DURING EXTRUSION , Applied Computer Science: Vol. 14 No. 4 (2018)
- Daniel HALIKOWSKI, Justyna PATALAS-MALISZEWSKA, Małgorzata SKRZESZEWSKA, A MODEL FOR ASSESSING THE LEVEL OF AUTOMATION OF A MAINTENANCE DEPARTMENT USING ARTIFICIAL NEURAL NETWORK , Applied Computer Science: Vol. 14 No. 4 (2018)
- Muayed S AL-HUSEINY, Ahmed S SAJIT, BREAST CANCER CAD SYSTEM BY USING TRANSFER LEARNING AND ENHANCED ROI , Applied Computer Science: Vol. 18 No. 1 (2022)
You may also start an advanced similarity search for this article.