CONSTRUCTION AND TECHNOLOGICAL ANALYSIS OF THE BROACH BLADE SHAPE USING THE FINITE ELEMENT METHOD
Article Sidebar
Open full text
Issue Vol. 13 No. 1 (2017)
-
AERODYNAMIC RESEARCH OF THE OVERPRESSURE DEVICE FOR INDIVIDUAL TRANSPORT
Paweł MAGRYTA5-19
-
MODELLING OF A LARGE ROTARY HEAT EXCHANGER
Tytus TULWIN20-28
-
INFORMATION TECHNOLOGY OF STOCK INDEXES FORECASTING ON THE BASE OF FUZZY NEURAL NETWORKS
Yuriy TRYUS, Nataliya ANTIPOVA, Kateryna ZHURAVEL, Grygoriy ZASPA29-40
-
CONSTRUCTION AND TECHNOLOGICAL ANALYSIS OF THE BROACH BLADE SHAPE USING THE FINITE ELEMENT METHOD
Stanisław BŁAWUCKI, Kazimierz ZALESKI41-50
-
CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS
Michał BIAŁY, Marcin SZLACHETKA51-60
-
FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS
Evans BAIDOO61-74
-
USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY
Paweł PIEŚKO, Magdalena ZAWADA-MICHAŁOWSKA75-84
-
SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION
Tomasz CHMIELEWSKI, Katarzyna ZIELIŃSKA85-96
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
The paper presents results of numerical FEM analyses of the process of broaching the groove using the Explicit module of the ABAQUS program. The impact of the blade geometry was presented and of the selected technological parameters of processing when cutting the aluminium EN-AW 6061-T6 alloy on the load of the broach blade during its operation. This article shows influence of value of rake and clearance angle onto deformations of the tool’s cutting edge in the transverse direction. An interaction between broach blade shape and reduced stress in the area of cutting edge was presented. The optimum geometry of the cutting tool was proposed.
Keywords:
References
Belov, V. S., & Ivanov, G. M. (1975). Improving the accuracy of surface broaching machines. Stanki i Instrumenty, 46(7), 6–8.
Boldyrev, I. S., Shchurov, I. A., & Nikonov, A. V. (2016). Numerical Simulation of the Aluminum 6061-T6 Cutting and theEffect of the Constitutive Material Model and Failure Criteria on Cutting Forces’ Prediction. Procedia Engineering, 150, 866–870. https://doi.org/10.1016/j.proeng.2016.07.031 DOI: https://doi.org/10.1016/j.proeng.2016.07.031
Dębski, H., & Sadowski, T. (2014). Modelling of microcracks initiation and evolution along interfaces of the WC/Co composite by the finite element method. Computational Material Science, 83, 403–411. https://doi.org/10.1016/j.commatsci.2013.11.045 DOI: https://doi.org/10.1016/j.commatsci.2013.11.045
Górski, E. (1967). Narzędzia skrawające kształtowe. Warszawa: WNT.
Grzesik, W. (2010). Podstawy skrawania materiałów konstrukcyjnych. Warszawa: WNT.
Kokmeyer, E. (1984). Better Broaching Operations. Society of Manufacturing Engineers Madison.
Kokturk, U., & Budak, E. (2004). Optimization of broaching tool design. Proceedings of the Intelligent Computation in Manufacturing Engineering – 4 Conference, CIRP ICME ’04. Sorrento.
Kosmol, J., & Mieszczak, W. (2009). Zastosowanie metody elementów skończonych do modelowania procesu wiercenia. Modelowanie Inżynierskie, 37, 169–176.
Lipski, J., Litak, G., Rusinek, R., Szabelski, K., Teter, A., Warmiński, J., & Zaleski, K. (2002). Surface quality of a work material's influence on the vibrations of the cutting process. Journal of Sound and Vibration, 252(4), s. 729–737. https://doi.org/10.1006/jsvi.2001.3943 DOI: https://doi.org/10.1006/jsvi.2001.3943
Monday, C. (1960). Broaching. London: The Machinery Publishing Co.
Sajeev, V., Vijaraghavan, L., & Rao, U.R. (2000). An analysis of the effects of burnishing in internal broaching. International Journal of Mechanical Engineering Education, 28(2), 163–173. DOI: https://doi.org/10.7227/IJMEE.28.2.5
Schulze, V., Zanger, F., & Boev, N. (2013). Numerical Investigations on Changes of the Main Shear Plane while Broaching. Procedia CIRP, 8, 246–251. https://doi.org/10.1016/j.procir.2013.06.097 DOI: https://doi.org/10.1016/j.procir.2013.06.097
Xiangwei, K., Bin, L., Zhibo, J., & Wenran, G. (2011). Broaching Performance of Superalloy GH4169 Based on FEM. Journal of Materials Science & Technology, 27(12), 1178–1184. https://doi.org/10.1016/S1005-0302(12)60015-2 DOI: https://doi.org/10.1016/S1005-0302(12)60015-2
Vogtel, P., Klocke, F., Lung, D., & Terzi, S. (2015). Automatic Broaching Tool Design by Technological and Geometrical Optimization. Procedia CIRP, 33, 496–501. https://doi.org/10.1016/j.procir.2015.06.061 DOI: https://doi.org/10.1016/j.procir.2015.06.061
Zhang, Y., Outeiro, J. C., & Mabrouki, T. (2015). On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP, 31, 112-117. https://doi.org/10.1016/j.procir.2015.03.052 DOI: https://doi.org/10.1016/j.procir.2015.03.052
Article Details
Abstract views: 145
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
