OPTIMIZATION OF FINGERPRINT SIZE FOR REGISTRATION
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2019)
-
IMPLEMENTING THE FADE-IN AUDIO EFFECT FOR REAL-TIME COMPUTING
Lucian LUPŞA-TĂTARU5-18
-
OPTIMIZATION OF FINGERPRINT SIZE FOR REGISTRATION
Hamid JAN, Amjad ALI19-30
-
NUMERICAL SIMULATIONS OF SANDWICH STRUCTURES UNDER LATERAL COMPRESSION
Quirino ESTRADA, Dariusz SZWEDOWICZ, Julio C. VERGARA, José SOLIS, Miguel A. PAREDES, Lara WIEBE, Jesús M. SILVA31-41
-
A NOVEL APPROACH TO ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK (MANET) THROUGH A NEW BANDWIDTH OPTIMIZATION TECHNIQUE
Md. Torikur RAHMAN42-52
-
APPLYING ARDUINO FOR CONTROLLING CAR PARKING SYSTEM
Kusay F. AL-TABATABAIE, Sadeer D. ABDULAMEER53-62
-
APPLYING INTELLIGENT TECHNIQUES FOR TALENT RECRUITMENT
Isaac FLORES-HERNÁNDEZ, Edmundo BONILLA-HUERTA, Perfecto MALAQUIAS QUINTERO-FLORES, Oscar Atriano PONCE, José Crispín HERNÁNDEZ-HERNÁNDEZ63-72
-
APPLICATION OF DATA MINING TECHNIQUES TO FIND RELATIONSHIPS BETWEEN THE DISHES OFFERED BY A RESTAURANT FOR THE ELABORATION OF COMBOS BASED ON THE PREFERENCES OF THE DINERS
Rosa Maria VAZQUEZ, Edmundo BONILLA, Eduardo SANCHEZ, Oscar ATRIANO, Cinthya BERRUECOS73-88
-
DETERMINATION OF RELATIVE LENGTHS OF BONE SEGMENTS OF THE DOMESTIC CAT'S LIMBS BASED ON THE DIGITAL IMAGE ANALYSIS
Katarzyna GOSPODAREK89-97
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
The propose algorithm finds the optimal reduced size of latent fingerprint. The algorithm accelerates the correlation methods of fingerprint registration. The Algorithm is based on decomposition and reduction of fingerprint to one dimension form by using the adoptive method of empirical modes. We choose the most appropriate internal mode to determine the minimum distance between the extremes of empirical modes. We can estimate how many times the fingerprint in the first step of the comparison can be reduced so as not to lose the accuracy of registration. This algorithm shows best results as compared to conventional fingerprint matching techniques that strongly depends on local features for registration. The algorithm was tested on latent fingerprints using FVC2002, FVC2004 and FVC2006 databases.
Keywords:
References
Bansal, R., Sehgal, P., & Bedi, P. (2011). Minutiae Extraction from Fingerprint Images – a Review. IJCSI International Journal of Computer Science Issues, 8(5), 74–85.
Bazen, A., Verwaaijen, G., Gerez, S., Veelenturf, L., & Zwaag, B. (2000). A correlation-based fingerprint verification system. In: Proceedings of the Workshop on Circuits Systems and Signal Processing (pp. 205–213). Veldhoven, The Netherlands.
Bhuiyan, S. M. A., Adhami, R. R., & Khan, J. F. (2008). A novel approach of fast and adaptive bidimensional empirical mode decomposition. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp.1313–1316). Las Vegas, NV. https://doi.org/10.1109/CASSP.2008.4517859 DOI: https://doi.org/10.1109/ICASSP.2008.4517859
Guryanov, F., & Krylov, A. S. (2017). Fast medical image registration using bidirectional empirical mode decomposition. Signal Processing: Image Communication, 59, 12–17. https://doi.org/10.1016/.image.2017.04.003 DOI: https://doi.org/10.1016/j.image.2017.04.003
Yager, N., & Amin, A. (2004). Fingerprint verification based on minutiae features: a review. Pattern Analysis and Applications, 7(1), 94–113. https://doi.org/10.1007/s10044-003-0201-2 DOI: https://doi.org/10.1007/s10044-003-0201-2
Jain, A., Hong, L., & Bolle, R. (1997). On-line fingerprint verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (4), 302–314. https://doi.org/10.1109/34.587996 DOI: https://doi.org/10.1109/34.587996
Jiang, X., & Yau, W. (2000). Fingerprint minutiae matching based on the local and global structures. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000 (pp. 1038–1041). Barcelona, Spain. https://doi.org/10.1109/ICPR.2000.906252 DOI: https://doi.org/10.1109/ICPR.2000.906252
Maes, F., Vandermeulen, D., & Suetens, P. (2003). Medical Image Registration Using Mutual Information. Proceedings of the IEEE, 91(10), 1699–1722. https://doi.org/10.1109/JPROC.2003.817864 DOI: https://doi.org/10.1109/JPROC.2003.817864
Park, C., Lee, J., Smith, M., Park, S., & Park, K. (2004). Directional filter bank-based fingerprint feature extraction and matching. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 74–85. https://doi.org/10.1109/TCSVT.2003.818355 DOI: https://doi.org/10.1109/TCSVT.2003.818355
Ratha, N., Karu, K., Chen, S., & Jain, A. (1996). A real-time matching system for large fingerprint databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 799–813. https://doi.org/10.1109/34.531800 DOI: https://doi.org/10.1109/34.531800
Sharat, S. C. (2005). Online fingerprint Verification System (Unpublished dissertation). University of New York Buffalo, USA.
Zhao, Y., Yao, R., Ouyang, L., Ding, H., Zhang, T., Zhang, K., Cheng, S., & Sun, W. (2014). ThreeDimensional Printing of Hela Cells for Cervical Tumor Model in Vitro. Biofabrication, 6(3), 035001. https://doi.org/10.1088/1758-5082/6/3/035001 DOI: https://doi.org/10.1088/1758-5082/6/3/035001
Article Details
Abstract views: 271
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
