OPTIMIZATION OF FINGERPRINT SIZE FOR REGISTRATION

Hamid JAN

hod.csit@suit.edu.pk
* Sarhad University of Science & Information Technology, Landi Akhun Ahmad, Hayatabad Link, Ring Road, Peshawar 25000 (Pakistan)

Amjad ALI


* Sarhad University of Science & Information Technology, Landi Akhun Ahmad, Hayatabad Link, Ring Road, Peshawar 25000 (Pakistan)

Abstract

The propose algorithm finds the optimal reduced size of latent fingerprint. The algorithm accelerates the correlation methods of fingerprint registration. The Algorithm is based on decomposition and reduction of fingerprint to one dimension form by using the adoptive method of empirical modes. We choose the most appropriate internal mode to determine the minimum distance between the extremes of empirical modes. We can estimate how many times the fingerprint in the first step of the comparison can be reduced so as not to lose the accuracy of registration. This algorithm shows best results as compared to conventional fingerprint matching techniques that strongly depends on local features for registration. The algorithm was tested on latent fingerprints using FVC2002, FVC2004 and FVC2006 databases.


Keywords:

optimization, correlation methods, fingerprint registration, latent fingerprint, empirical modes

Bansal, R., Sehgal, P., & Bedi, P. (2011). Minutiae Extraction from Fingerprint Images – a Review. IJCSI International Journal of Computer Science Issues, 8(5), 74–85.
  Google Scholar

Bazen, A., Verwaaijen, G., Gerez, S., Veelenturf, L., & Zwaag, B. (2000). A correlation-based fingerprint verification system. In: Proceedings of the Workshop on Circuits Systems and Signal Processing (pp. 205–213). Veldhoven, The Netherlands.
  Google Scholar

Bhuiyan, S. M. A., Adhami, R. R., & Khan, J. F. (2008). A novel approach of fast and adaptive bidimensional empirical mode decomposition. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp.1313–1316). Las Vegas, NV. https://doi.org/10.1109/CASSP.2008.4517859
DOI: https://doi.org/10.1109/ICASSP.2008.4517859   Google Scholar

Guryanov, F., & Krylov, A. S. (2017). Fast medical image registration using bidirectional empirical mode decomposition. Signal Processing: Image Communication, 59, 12–17. https://doi.org/10.1016/.image.2017.04.003
DOI: https://doi.org/10.1016/j.image.2017.04.003   Google Scholar

Yager, N., & Amin, A. (2004). Fingerprint verification based on minutiae features: a review. Pattern Analysis and Applications, 7(1), 94–113. https://doi.org/10.1007/s10044-003-0201-2
DOI: https://doi.org/10.1007/s10044-003-0201-2   Google Scholar

Jain, A., Hong, L., & Bolle, R. (1997). On-line fingerprint verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (4), 302–314. https://doi.org/10.1109/34.587996
DOI: https://doi.org/10.1109/34.587996   Google Scholar

Jiang, X., & Yau, W. (2000). Fingerprint minutiae matching based on the local and global structures. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000 (pp. 1038–1041). Barcelona, Spain. https://doi.org/10.1109/ICPR.2000.906252
DOI: https://doi.org/10.1109/ICPR.2000.906252   Google Scholar

Maes, F., Vandermeulen, D., & Suetens, P. (2003). Medical Image Registration Using Mutual Information. Proceedings of the IEEE, 91(10), 1699–1722. https://doi.org/10.1109/JPROC.2003.817864
DOI: https://doi.org/10.1109/JPROC.2003.817864   Google Scholar

Park, C., Lee, J., Smith, M., Park, S., & Park, K. (2004). Directional filter bank-based fingerprint feature extraction and matching. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 74–85. https://doi.org/10.1109/TCSVT.2003.818355
DOI: https://doi.org/10.1109/TCSVT.2003.818355   Google Scholar

Ratha, N., Karu, K., Chen, S., & Jain, A. (1996). A real-time matching system for large fingerprint databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 799–813. https://doi.org/10.1109/34.531800
DOI: https://doi.org/10.1109/34.531800   Google Scholar

Sharat, S. C. (2005). Online fingerprint Verification System (Unpublished dissertation). University of New York Buffalo, USA.
  Google Scholar

Zhao, Y., Yao, R., Ouyang, L., Ding, H., Zhang, T., Zhang, K., Cheng, S., & Sun, W. (2014). ThreeDimensional Printing of Hela Cells for Cervical Tumor Model in Vitro. Biofabrication, 6(3), 035001. https://doi.org/10.1088/1758-5082/6/3/035001
DOI: https://doi.org/10.1088/1758-5082/6/3/035001   Google Scholar

Download


Published
2019-06-30

Cited by

JAN, H. ., & ALI, A. . (2019). OPTIMIZATION OF FINGERPRINT SIZE FOR REGISTRATION. Applied Computer Science, 15(2), 19–30. https://doi.org/10.23743/acs-2019-10

Authors

Hamid JAN 
hod.csit@suit.edu.pk
* Sarhad University of Science & Information Technology, Landi Akhun Ahmad, Hayatabad Link, Ring Road, Peshawar 25000 Pakistan

Authors

Amjad ALI 

* Sarhad University of Science & Information Technology, Landi Akhun Ahmad, Hayatabad Link, Ring Road, Peshawar 25000 Pakistan

Statistics

Abstract views: 103
PDF downloads: 13


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.