FINITE ELEMENT BASED PREDICTION OF DEFORMATION IN SHEET METAL FORMING PROCESS

Damian KRASKA

kraska94@gmail.com
Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszów (Poland)

Tomasz TRZEPIECIŃSKI


* Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszów (Poland)

Abstract

In this paper the sheet forming process of cylindrical drawpieces was sim-ulated based on the finite element method by the explicit approach in the presence of contact conditions with isotropic and anisotropic friction. The experimental and numerical results obtained in the Abaqus finite element (FE) based program are presented. The aim of the experimental study is to analyse material behaviour under deformation and in addition to use the results to verify numerical simulation results. It was found that, although, the anisotropy of resistance to friction affects the height of ears, the influence of the friction formulation is relatively small in comparison with material anisotropy. The study indicates that FE analysis with 3-node triangular shell element S3R elements ensures the best approximation of the numerical results to the real process when both material and friction anisotropy are taken into account.


Keywords:

deep-drawing, finite element method, sheet metal forming

Affronti, E., & Merklein, M. (2018). Analysis of the bending effects and the biaxial pre-straining in sheet metal stretch forming processes for the determination of the forming limits. International Journal of Mechanical Sciences, 138–139, 295–309. https://doi.org/10.1016/j.ijmecsci.2018.02.024
DOI: https://doi.org/10.1016/j.ijmecsci.2018.02.024   Google Scholar

Banabic, D. (2010). Sheet metal forming processes. Constitutive modelling and numerical simulation. Berlin Heidelberg: Springer-Verlag.
DOI: https://doi.org/10.1007/978-3-540-88113-1   Google Scholar

Falsafi, J., Demirci, E., & Silberschmidt, V. V. (2016). Computational assessment of residual formability in sheet metal forming processes for sustainable recycling. International Journal of Mechanical Sciences, 119, 187–196. https://doi.org/10.1016/j.ijmecsci.2016.10.013
DOI: https://doi.org/10.1016/j.ijmecsci.2016.10.013   Google Scholar

Hattalli, V. L., & Srivatsa, S. R. (2018). Sheet metal forming processes – recent technological advances. Materials Today – Proceedings, 5(1), 2564–2574. https://doi.org/10.1016/j.matpr.2017.11. 040
DOI: https://doi.org/10.1016/j.matpr.2017.11.040   Google Scholar

Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society A, 193, 281–297. https://doi.org/10.1098/rspa.1948.0045
DOI: https://doi.org/10.1098/rspa.1948.0045   Google Scholar

Larsson, M. (2009). Computational characterization of drawbeads: A basic modelling method for data generation. Journal of Materials Processing Technology, 209(1), 376–386. https://doi.org/10.1016/j.jmatprotec.2008.02.009
DOI: https://doi.org/10.1016/j.jmatprotec.2008.02.009   Google Scholar

Li, P., He, J., Liu, Q., Yang, M., Wang, Q., Yuan, Q., & Li, Y. (2017). Evaluation of forming forces in ultrasonic incremental sheet metal forming. Aerospace Science and Technology, 63, 132–139. https://doi.org/10.1016/j.ast.2016.12.028
DOI: https://doi.org/10.1016/j.ast.2016.12.028   Google Scholar

Ramzi, B. H., Sebastien, T., Fabrice, R., Gemala, H., & Pierrick, M. (2017). Numerical prediction of the forming limit diagrams of thin sheet metal using SPIF tests. Procedia Engineering, 183, 113–118. https://doi.org/10.1016/j.proeng.2017.04.029
DOI: https://doi.org/10.1016/j.proeng.2017.04.029   Google Scholar

Trzepieciński, T., & Gelgele, H. L. (2011). Investigation of anisotropy problems in sheet metal forming using finite element method. International Journal of Material Forming, 4(4), 357–369. https://doi.org/10.1007/s12289-010-0994-7
DOI: https://doi.org/10.1007/s12289-010-0994-7   Google Scholar

von Mises, R. (1913). Mechanik der festen Kö¨rper im plastisch deformablen Zustand. Nachrichten von der Köngl. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913, 582–592.
  Google Scholar

Download


Published
2018-09-30

Cited by

KRASKA, D., & TRZEPIECIŃSKI, T. (2018). FINITE ELEMENT BASED PREDICTION OF DEFORMATION IN SHEET METAL FORMING PROCESS. Applied Computer Science, 14(3), 43–53. https://doi.org/10.23743/acs-2018-20

Authors

Damian KRASKA 
kraska94@gmail.com
Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszów Poland

Authors

Tomasz TRZEPIECIŃSKI 

* Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszów Poland

Statistics

Abstract views: 442
PDF downloads: 3


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.