INJECTION SIMULATION FOR THE MOLD PROCESS IN THE MEDICAL INDUSTRY
Sebastian BIAŁASZ
sebastian.bialasz@gmail.comDepartment of Polymer Processing, Mechanical Engineering Faculty, Lublin University of Technology (Poland)
Abstract
This paper presents information on the methods of construction and selection of materials, for the manufacturing of a medical device – a syringe filter. The main scope of the research was numerical simulation made in order to optimize the injection process. This simulation comprised of two parts: the first in which the chosen optimal number and position of injection points on the surface, and a second with the chosen optimum wall thickness, using a pre-selected injection points.
Keywords:
Simulation, injection, mold, medical industryReferences
Ananthanarayanan, A. (2009). Development of In-Mold Assembly Methods for Producing Mesoscale Revolute Joints (Doctoral dissertation). Retrieved from University of Maryland
Google Scholar
Beaumont, J. P., Nagel, R., & Sherman, R. (2002). Successful Injection Molding: Process, Design, and Simulation. USA: Hanser Gardner Publications.
Google Scholar
Beaumont, J. P. (2004). Runner and Gating Design Handbook: Tools for Successful Injection Molding. USA: Hanser Gardner Publications.
Google Scholar
Bojarski, J., & Zimek, Z. (1997). Polipropylen modyfikowany odporny radiacyjnie. In IV Szkoła Sterylizacji Radiacyjnej Sprzętu Medycznego, Przeszczepów, Farmaceutyków i Kosmetyków (pp. XVII/1–XVII/7). Warszawa: Instytut Chemii i Techniki Jądrowej.
Google Scholar
Canal, F., Sanchis, J., & Vicent, M. J. (2011). Current Opinion in Biotechnology. Chemical biotechnology and Pharmaceutical biotechnology, 22(6), 894–900.
DOI: https://doi.org/10.1016/j.copbio.2011.06.003
Google Scholar
Fathi, S., & Behravesh, A. H. (2004). Visualization of in-mold shrinkage in injection molding process. Polymer Engineering and Science, 47(5), 750–756.
DOI: https://doi.org/10.1002/pen.20740
Google Scholar
Garbacz, T., & Sikora, J. (2012). Przetwórstwo tworzyw polimerowych, ćwiczenia laboratoryjne, część 1. Lublin: Wydawnictwo Politechniki Lubelskiej.
Google Scholar
Grabowska, B. (2010). Biodegradacja tworzyw polimerowych. Archives of foundry engineering, 10(2), 57–60.
Google Scholar
Harper, C. A. (2006). Handbook of Plastic Processes. Hoboken: John Wiley & Sons Inc.
DOI: https://doi.org/10.1002/0471786586
Google Scholar
Jachowicz, T., & Klepka, T. (2012). Przetwórstwo tworzyw polimerowych, ćwiczenia laboratoryjne, część 2. Lublin: Wydawnictwo Politechniki Lubelskiej.
Google Scholar
Kazmer, D. O. (2007). Injection Mold Design Engineering. USA: Hanser Gardner Publications.
DOI: https://doi.org/10.3139/9783446434196.fm
Google Scholar
Knights, M. (2007, January 3). In-Mold Assembly: The New Frontier of Multi-Shot Molding. Plastics Technology. Retrieved from https://www.ptonline.com/articles/in-mold-assemblythe-new-frontier-for-multi-shot-molding.
Google Scholar
Kołtowska, M., & Klepka, T. (2015). Charakterystyka nowoczesnych strzykawek medycznych wytwarzanych z tworzyw polimerowych. In T. Jachowicz, & M. Kłonica (Eds.), Nowoczesne Technologie w projektowaniu, inżynierii i wytwarzaniu (pp. 173–186). Lublin: Perfekta Info.
Google Scholar
Malloy, R. A. (1994). Part Design for Injection Molding. USA: Hanser Gardner Publications.
Google Scholar
Nabiałek, J., & Koszkul, J. (2007). Modelowanie przepływu podczas wypełniania gniazda. Zeszyty Naukowe Politechniki Poznańskiej, 4, 167–172.
Google Scholar
Olędzka, E., Sobczak, M., & Kołodziejski, W. L. (2007). Polimery w medycynie – przegląd dotychczasowych osiągnięć. Polimery, 11–12, 795–803.
DOI: https://doi.org/10.14314/polimery.2007.795
Google Scholar
Pielichowski, J., & Pruszyński, A. (1998). Technologia tworzyw sztucznych. Warszawa: Wydawnictwa Naukowo-Techniczne.
Google Scholar
Sikora, R. (2006). Przetwórstwo tworzyw polimerowych. Podstawy logiczne, formalne i terminologiczne. Lublin: Wydawnictwo Politechniki Lubelskiej.
Google Scholar
Rabek, J. F. (2008). Współczesna wiedza o polimerach. Warszawa: Wydawnictwo Naukowe PWN.
Google Scholar
Shick, L. L., & King, B. W. (2012). U.S. Patent No. 0264266 A1. Washington, USA: U.S. Patent and Trademark Office.
Google Scholar
Sikora, R. (1993). Przetwórstwo tworzyw wielocząsteczkowych. Warszawa: Wydawnictwo Edukacyjne.
Google Scholar
Sykutera, D. (2012). Wspomaganie komputerowe w procesach przetwórczych – materiały wykładowe. Bydgoszcz: UTP Bydgoszcz.
Google Scholar
Tadmor, Z., & Gogos, C. G. (2006). Principles of Polymer Processing. Hoboken: John Wiley & Sons.
Google Scholar
Wilczynski, K. (1999). CADMOULD-3D – computer modeling of polymers injection process simulation of filling phase. Polymers, 44(6), 407–412.
DOI: https://doi.org/10.14314/polimery.1999.407
Google Scholar
Zimek, Z., Bułhak, Z., Bojarski, J., Mirkowski, K., & Stachowicz, W. (1992). European Patent No. PL 169177. Warszawa, Poland: European Patent Office.
Google Scholar
Authors
Sebastian BIAŁASZsebastian.bialasz@gmail.com
Department of Polymer Processing, Mechanical Engineering Faculty, Lublin University of Technology Poland
Statistics
Abstract views: 129PDF downloads: 18
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Sebastian BIAŁASZ, Ramon PAMIES, NUMERICAL SIMULATION OF THE DESIGN OF EXTRUSION PROCESS OF POLYMERIC MINI-TUBES , Applied Computer Science: Vol. 14 No. 3 (2018)
Similar Articles
- Irena NOWOTYŃSKA, Stanisław KUT, COMPARATIVE ANALYSIS OF THE IMPACT OF DIE DESIGN ON ITS LOAD AND DISTRIBUTION OF STRESS DURING EXTRUSION , Applied Computer Science: Vol. 14 No. 4 (2018)
You may also start an advanced similarity search for this article.