COMPUTER MODELLING OF THERMAL TECHNICAL SPACESS IN ASPECT OF HEAT TRANSFER THROUGH THE WALLS
Marian JANCZAREK
m.janczarek@pollub.pl* Lublin University of Technology, Institute of Technological Systems of Information, 20-618 Lublin, Nadbystrzycka 36 (Poland)
Abstract
This paper presents the analysis of complex problems in the field of energy savings and it is focused on the new concept of thermal analysis derived from harmonic character of temperature changes in building environment – especially in a fruit storages – with aspect on conductive heat transfers through walls. This changeable influence of variable weather temperature on internal temperature of technical chamber depends on thermal inertia of building. The paper describes research work on methods concerning heat transfers through walls of thermal technical chambers in the impact of sinusoidal nature of the changes in atmospheric temperature. The purpose for the research is to point out areas subjected to the highest energy losses caused by building’s construction and geographical orientation of walls in the aspect of daily atmospheric temperature changes emerging on chamber exterior. The paper presents exemplary measurement results taken in Lublin region during various periods throughout a year.
Keywords:
heat transfer, energy saving, temperature, model of walls layersReferences
Bzowska, D. (2005). Natural ventilation induced by weather parameters in two-zone building. Archives of Civil Engineering, 51(1), 135–151.
Google Scholar
Calderaro, V., & Agnoli, S. (2007). Passive heating and cooling strategies in an approaches of retrofit in Rome. Energy and Buildings, 39(8), 875–885. https://doi.org/10.1016/j.enbuild.2006.10.008
DOI: https://doi.org/10.1016/j.enbuild.2006.10.008
Google Scholar
Chwieduk, D. (2006). Modelowanie i analiza pozyskiwania oraz konwersji termicznej energii promieniowania słonecznego w budynku. Warszawa: Prace Instytutu Podstawowych Problemów Techniki PAN.
Google Scholar
Dzieniszewski, W. (2005). Procesy cieplno-przepływowe w budynkach: podstawy modelowania matematycznego. Łódź: Komitet Inżynierii Lądowej i Wodnej PAN.
Google Scholar
Etheridge, D. (2002). Nondimensional methods for natural ventilation design. Building and Environment, 37(11), 1057-1072. https://doi.org/10.1016/S0360-1323(01)00091-9
DOI: https://doi.org/10.1016/S0360-1323(01)00091-9
Google Scholar
Fracastaro, G., Mutani, G., & Perino, M. (2002). Experimental and theoretical analysis of natural ventilation by window openings. Energy and Buildings, 34(8), 817–827. https://doi.org/10.1016/S0378-7788(02)00099-3
DOI: https://doi.org/10.1016/S0378-7788(02)00099-3
Google Scholar
Hunt, G. R., & Linden. P. F. (2001). Steady-state flows in an enclosure ventilated by buoyancy forces assisted by winds. Journal of Fluid Mechanics, 426, 355–386.
DOI: https://doi.org/10.1017/S0022112000002470
Google Scholar
Janczarek M. M. (2000). Models of heat transfer through walles of thermal technical spaces, In Výrobní stroje, automatizace a robotizace ve strojírenství: Společná problematika všech sekcí : Sborník přednášek (pp. 145–150). Praha: České Vysoké Učení Techniceské v Praze – Fakulta Strojní.
Google Scholar
Janczarek M., Bulyandra O. (2017). Computer aided thermal processes in technical spaces. Applied Computer Science, 13(2), 82–93. https://doi.org/10.23743/acs-2017-16.
Google Scholar
Janczarek, M. M. (2013). Analiza matematyczno-fizyczna cieplnych komór technicznych. In M. Janczarek & J. Lipski (Eds.), Technologie informacyjne w technice i kształceniu (pp. 127–137). Lublin, Polska: Politechnika Lubelska.
Google Scholar
Janczarek, M. M., & Świć, A. (2012). Scientific and technological description of heat and mass transfer processes in chambers. Annals of Faculty of Engineering Hunedoara – International Journal of Engineering, 10, 55–60.
Google Scholar
Janczarek, M., & Bulyandra, O. (2016). Computer modeling of energy saving effects. Applied Computer Science, 12(3), 47–60.
Google Scholar
Janczarek, M., Sklaski, P., Bulyandra, A., & Sobczuk, H. (2006). Przewodność cieplna zewnętrznych ścian budynków w aspekcie wilgotności i oszczędności energii: Thermal conductivity of external walls of buildings in aspects of moistness and energy saving, Rynek Energii, 4, 32–35.
Google Scholar
Meteorological diagrams [online image]. (2017). Retrieved September 15, 2017 from http://http://www.meteo.pl
Google Scholar
Suchorab, Z., Sobczuk, H., & Lagod, G. (2016). Estimation of Building Material Moisture Using Non-invasive TDR Sensors. In L. Pawłowski (Ed.), Environmental Engineering IV (pp. 433–439). London: Taylor & Francis Group. https://doi.org/10.1201/b14894-64
DOI: https://doi.org/10.1063/1.4955231
Google Scholar
Authors
Marian JANCZAREKm.janczarek@pollub.pl
* Lublin University of Technology, Institute of Technological Systems of Information, 20-618 Lublin, Nadbystrzycka 36 Poland
Statistics
Abstract views: 86PDF downloads: 25
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Marian JANCZAREK, Oleksij BULYANDRA, COMPUTER AIDED THERMAL PROCESSES IN TECHNICAL SPACES , Applied Computer Science: Vol. 13 No. 2 (2017)
Similar Articles
- Marcin TOMCZYK, Barbara BOROWIK, Mariusz MIKULSKI, IDENTIFICATION OF A BACKLASH ZONE IN AN ELECTROMECHANICAL SYSTEM CONTAINING CHANGES OF A MASS INERTIA MOMENT BASED ON A WAVELET–NEURAL METHOD , Applied Computer Science: Vol. 14 No. 4 (2018)
- Leszek JASKIERNY, REVIEW OF THE DATA MODELING STANDARDS AND DATA MODEL TRANSFORMATION TECHNIQUES , Applied Computer Science: Vol. 14 No. 4 (2018)
- Paweł MAGRYTA, AERODYNAMIC RESEARCH OF THE OVERPRESSURE DEVICE FOR INDIVIDUAL TRANSPORT , Applied Computer Science: Vol. 13 No. 1 (2017)
- Tomasz CHMIELEWSKI, Katarzyna ZIELIŃSKA, SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION , Applied Computer Science: Vol. 13 No. 1 (2017)
- Wulan Dewi, Wiranto Herry Utomo, PLANT CLASSIFICATION BASED ON LEAF EDGES AND LEAF MORPHOLOGICAL VEINS USING WAVELET CONVOLUTIONAL NEURAL NETWORK , Applied Computer Science: Vol. 17 No. 1 (2021)
You may also start an advanced similarity search for this article.