PLANT CLASSIFICATION BASED ON LEAF EDGES AND LEAF MORPHOLOGICAL VEINS USING WAVELET CONVOLUTIONAL NEURAL NETWORK
Article Sidebar
Open full text
Issue Vol. 17 No. 1 (2021)
-
ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY
Marcin Topczak, Małgorzata Śliwa5-16
-
PRACTICAL APPLICATION OF FUZZY LOGIC IN PRODUCTION CONTROL SYSTEMS OF ENGINEER TO ORDER SMES
Bartosz Cieśla, Janusz Mleczko17-25
-
ANALYSIS OF THE POSSIBILITY OF USING MARKERS EMITTING PULSATING LIGHT IN THE TASK OF LOCALIZATION
Piotr Miś, Przemysław Szulim26-39
-
RESOLUTION IN THE 3D MODELING OF OBJECTS FOR ADDITIVE MANUFACTURING AND REVERSE ENGINEERING – SHUTTER EFFECT
Elvis COUTIÑO-MORENO, Quirino ESTRADA, Daniel MALDONADO-ONOFRE, Alejandro RODRIGUEZ-MENDEZ, Julio GOMEZ-GIRON40-52
-
NOVEL SIMPLE DESIGN AND ANALYSIS OF WI-MAX TRANSCEIVER USING MATLAB-SIMULINK
Muaayed F. AL-RAWI, Muhanned F. AL-RAWI53-60
-
VIRTUAL REALITY IN PRODUCTION LAYOUT DESIGNING
Dariusz Plinta, Karolina Kłaptocz61-69
-
SEARCH ENGINE OPTIMIZATION: A REVIEW
Firas ALMUKHTAR, Nawzad MAHMOODD, Shahab KAREEM70-80
-
PLANT CLASSIFICATION BASED ON LEAF EDGES AND LEAF MORPHOLOGICAL VEINS USING WAVELET CONVOLUTIONAL NEURAL NETWORK
Wulan Dewi, Wiranto Herry Utomo81-89
Archives
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
Main Article Content
DOI
Authors
Abstract
The leaf is one of the plant organs, contains chlorophyll, and functions as a catcher of energy from sunlight which is used for photosynthesis. Perfect leaves are composed of three parts, namely midrib, stalk, and leaf blade. The way to identify the type of plant is to look at the shape of the leaf edges. The shape, color, and texture of a plant's leaf margins may influence its leaf veins, which in this vein morphology carry information useful for plant classification when shape, color, and texture are not noticeable. Humans, on the other hand, may fail to recognize this feature because they prefer to see plants solely based on leaf form rather than leaf margins and veins. This research uses the Wavelet method to denoise existing images in the dataset and the Convolutional Neural Network classifies through images. The results obtained using the Wavelet Convolutional Neural Network method are equal to 97.13%.
Keywords:
References
Alimboyong, C. R., & Hernandez, A. A. (2019). An Improved Deep Neural Network for Classification of Plant Seedling Images. 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA) (pp. 217–222). IEEE. https://doi.org/10.1109/CSPA.2019.8696009 DOI: https://doi.org/10.1109/CSPA.2019.8696009
Bouny, L. El., Khalil, M., & Adib, A. (2020). ECG Heartbeat Classification Based On Multi-Scale Wavelet Convolutional Neural Networks. ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3212–3216). IEEE. https://doi.org/10.1109/ ICASSP40776.2020.9054749 DOI: https://doi.org/10.1109/ICASSP40776.2020.9054749
Choi, K. S., Shin, J. S., Lee, J. J., Kim, Y. S., Kim, S. B., & Kim, C. W. (2005). Gradient-Based Learning Applied to Document Recognition. Biochemical and Biophysical Research Communications, 330(4), 1299–1305. https://doi.org/10.1016/j.bbrc.2005.03.111 DOI: https://doi.org/10.1016/j.bbrc.2005.03.111
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings – 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR (pp. 1800–1807). IEEE. https://doi.org/10.1109/CVPR.2017.195 DOI: https://doi.org/10.1109/CVPR.2017.195
Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using deep convolutional neural network. Biosystems Engineering, 151(2005), 72–80. https://doi.org/10.1016/j.biosystemseng.2016.08.024 DOI: https://doi.org/10.1016/j.biosystemseng.2016.08.024
Fujieda, S., Takayama, K., & Hachisuka, T. (2018). Wavelet convolutional neural networks. In arXiv: Vol. arXiv:1805. arXiv:1805.08620.
Grinblat, G. L., Uzal, L. C., Larese, M. G., & Granitto, P. M. (2016). Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture, 127, 418–424. https://doi.org/10.1016/j.compag.2016.07.003 DOI: https://doi.org/10.1016/j.compag.2016.07.003
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377. https://doi.org/10.1016/j.patcog.2017.10.013 DOI: https://doi.org/10.1016/j.patcog.2017.10.013
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 770–778). IEEE. https://doi.org/10.1109/CVPR.2016.90 DOI: https://doi.org/10.1109/CVPR.2016.90
Heredia, I. (2017). Large-scale plant classification with deep neural networks. ACM International Conference on Computing Frontiers 2017, CF 2017 (pp. 259–262). Association for Computing Machinery. https://doi.org/10.1145/3075564.3075590 DOI: https://doi.org/10.1145/3075564.3075590
Hongqiao, L., & Shengqian, W. (2009). A new image denoising method using wavelet transform. Proceedings - 2009 International Forum on Information Technology and Applications, IFITA 2009 (1(1), pp. 111–114). https://doi.org/10.1109/IFITA.2009.47 DOI: https://doi.org/10.1109/IFITA.2009.47
Kimlyk, M., & Umnyashkin, S. (2018). Image Denoising Using Discrete Wavelet Transform and Edge Information. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 1823–1825). IEEE. https://doi.org/10.1109/EIConRus.2018.8317461 DOI: https://doi.org/10.1109/EIConRus.2018.8317461
Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (pp. 1–15). arXiv.org.
Krizhevsky, B. A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6), 84–90. DOI: https://doi.org/10.1145/3065386
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539
Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2017). How deep learning extracts and learns leaf features for plant classification. Pattern Recognition, 71, 1–13. https://doi.org/10.1016/j.patcog.2017.05.015 DOI: https://doi.org/10.1016/j.patcog.2017.05.015
Lee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P. (2015). Deep-plant: Plant identification with convolutional neural networks. Proceedings - International Conference on Image Processing, ICIP (pp. 452–456). https://doi.org/10.1109/ICIP.2015.7350839 DOI: https://doi.org/10.1109/ICIP.2015.7350839
Liu, J., Yang, S., Cheng, Y., & Song, Z. (2019). Plant Leaf Classification Based on Deep Learning. Proceedings 2018 Chinese Automation Congress, CAC 2018 (pp. 3165–3169). Xi'an, China. https://doi.org/10.1109/CAC.2018.8623427 DOI: https://doi.org/10.1109/CAC.2018.8623427
Liu, P., Zhang, H., Zhang, K., Lin, L., & Zuo, W. (2018). Multi-level wavelet-CNN for image restoration. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 886–895). IEEE. https://doi.org/10.1109/CVPRW.2018.00121 DOI: https://doi.org/10.1109/CVPRW.2018.00121
Mohideen, S. K., Perumal, S. A., & Sathik, M. M. (2008). Image De-noising using Discrete Wavelet transform. IJCSNS International Journal of Computer Science and Network Security, 8(1), 8–11.
Ramanarayanan, S., Murugesan, B., Ram, K., & Sivaprakasam, M. (2020). DC-WCNN: A Deep Cascade of Wavelet Based Convolutional Neural Networks for MR Image Reconstruction. Proceedings - International Symposium on Biomedical Imaging (pp. 1069–1073). IEEE. https://doi.org/10.1109/ISBI45749.2020.9098491 DOI: https://doi.org/10.1109/ISBI45749.2020.9098491
Scoffoni, C., Rawls, M., Mckown, A., Cochard, H., & Sack, L. (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant Physiology, 156(2), 832–843. https://doi.org/10.1104/pp.111.173856 DOI: https://doi.org/10.1104/pp.111.173856
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings (pp. 1–14). CoRR, abs/1409.1556.
Song, Q., Ma, L., Cao, J., & Han, X. (2016). Image Denoising Based on Mean Filter and Wavelet Transform. Proceedings – 2015 4th International Conference on Advanced Information Technology and Sensor Application, AITS (pp. 39–42). IEEE. https://doi.org/10.1109/AITS.2015.17 DOI: https://doi.org/10.1109/AITS.2015.17
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-ResNet and the impact of residual connections on learning. 31st AAAI Conference on Artificial Intelligence (pp. 4278–4284). AAAI. DOI: https://doi.org/10.1609/aaai.v31i1.11231
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A., (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–9). IEEE. https://doi.org/10.1109/cvpr.2015.7298594 DOI: https://doi.org/10.1109/CVPR.2015.7298594
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 2818–2826). IEEE. https://doi.org/10.1109/CVPR.2016.308 DOI: https://doi.org/10.1109/CVPR.2016.308
Xie, S., Girshick, R., & Doll, P. (2017). Aggregated Residual Transformations for Deep Neural Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5987–5995). IEEE. https://doi.org/10.1109/CVPR.2017.634 DOI: https://doi.org/10.1109/CVPR.2017.634
Yalcin, H., & Razavi, S. (2016). Plant classification using convolutional neural networks. 2016 Fifth International Conference on Agro–Geoinformatics (Agro-Geoinformatics) (pp. 1-5). IEEE. https://doi.org/10.1109/Agro-Geoinformatics.2016.7577698 DOI: https://doi.org/10.1109/Agro-Geoinformatics.2016.7577698
Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), 1–25. https://doi.org/10.1002/widm.1253 DOI: https://doi.org/10.1002/widm.1253
Article Details
Abstract views: 470
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
