APPLICATION OF A COMPUTER TOOL MONITORING SYSTEM IN CNC MACHINING CENTRES
Damian KOLNY
dkolny@ath.bielsko.plUniversity of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 (Poland)
Dorota WIĘCEK
University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 (Poland)
Paweł ZIOBRO
ZPT Industry | Automation | Research & Development | Innovations (Poland)
Martin KRAJČOVIČ
University of Zilina, Industrial Engineering Department, 010 26 Žilina, Univerzitná 1, (Slovakia)
Abstract
The article presents practical knowledge about production process optimisation as a result of implementing a specialized system monitoring the work of machining tools. It features complex results of the conducted research with use of dedicated equipment and software, whose unconventional application may appear to be an effective IT tool for taking operational and strategic decisions in the machining area. This results from the possibility of analysing the obtained data in both current and long-term perspective, and taking decisions on this basis, which significantly conditions the rationality of using this type of solutions.
Keywords:
current process control, tool wear monitoring system, process optimizationReferences
Addona, D. M. D., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Procedia CIRP, 12, 252–257. https://doi.org/10.1016/j.procir.2013.09.044
DOI: https://doi.org/10.1016/j.procir.2013.09.044
Google Scholar
Barreiro, J., Fernández-Abia, A. I., González-Laguna, A., & Pereira, O. (2017). TCM system in contour milling of very thick-very large steel plates based on vibration and AE signals. Journal of Materials Processing Technology, 246, 144–157. https://doi.org/10.1016/j.jmatprotec.2017.03.016
DOI: https://doi.org/10.1016/j.jmatprotec.2017.03.016
Google Scholar
Jemielniak, K. (2002). Automatyczna diagnostyka stanu narzędzia i procesu skrawania. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
Google Scholar
Jurko, J. (2007). Monitoring and Diagnosis of Drill Wear and the Thermodynamic Phenomenas of Material Removal by drilling of Stainless Steels. In: E.E. Gdoutos (Ed.) Experimental Analysis of Nano and Engineering Materials and Structures (vol. 37, 77–78). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-6239-1_37
DOI: https://doi.org/10.1007/978-1-4020-6239-1_37
Google Scholar
Kious, M., Ouahabi, A., Boudraa, M., Serra, R., & Cheknane, A. (2010). Detection process approach of tool wear in high speed milling. Measurement, 43, 1439–1446. https://doi.org/10.1016/j.measurement.2010.08.014
DOI: https://doi.org/10.1016/j.measurement.2010.08.014
Google Scholar
Kuljanic, E., & Sortino, M. (2005). TWEM a method based on cutting forces monitoring tool wear in face milling, Mach. Tools Manuf. J., 45, 29–34. https://doi.org/10.1016/j.ijmachtools.2004.06.016
DOI: https://doi.org/10.1016/j.ijmachtools.2004.06.016
Google Scholar
Kuryjański, R. (2011). Obróbka skrawaniem i obrabiarki. Warszawa: Expol.
Google Scholar
Nouri, M., Fussell, B. K., Ziniti, B. L., & Linder, E. (2015). Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 89, 1–13. https://doi.org/10.1016/j.ijmachtools.2014.10.011
DOI: https://doi.org/10.1016/j.ijmachtools.2014.10.011
Google Scholar
Storch, B. (2001). Podstawy obróbki skrawaniem. Koszalin: Wydaw. Politechniki Koszalińskiej.
Google Scholar
Więcek, D. (2013). Implementation of Artificial Intelligence in Estimating Prime Costs of Producing Machine Elements. Advances in Manufacturing Science and Technology, 37, 43–53. https://doi.org/10.2478/amst-2013-0004
DOI: https://doi.org/10.2478/amst-2013-0004
Google Scholar
Wittbrodt, P. (2014). Nadzorowanie i prognozowanie stanu narzędzi skrawających w procesie skrawania. Innowacje w Zarządzaniu i Inżynierii Produkcji (cz. 1, 833–834). Zakopane: Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją.
Google Scholar
Authors
Damian KOLNYdkolny@ath.bielsko.pl
University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 Poland
Authors
Dorota WIĘCEK University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, 43-309 Bielsko-Biała, Willowa 2 Poland
Authors
Paweł ZIOBROZPT Industry | Automation | Research & Development | Innovations Poland
Authors
Martin KRAJČOVIČUniversity of Zilina, Industrial Engineering Department, 010 26 Žilina, Univerzitná 1, Slovakia
Statistics
Abstract views: 141PDF downloads: 11
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Damian KOLNY, Dawid KURCZYK, Józef MATUSZEK, COMPUTER SUPPORT OF ERGONOMIC ANALYSIS OF WORKING CONDITIONS AT WORKSTATIONS , Applied Computer Science: Vol. 15 No. 1 (2019)
- Martin KRAJČOVIČ, Patrik GRZNÁR, UTILISATION OF EVOLUTION ALGORITHM IN PRODUCTION LAYOUT DESIGN , Applied Computer Science: Vol. 13 No. 3 (2017)
- Dariusz PLINTA, Martin KRAJČOVIČ, APPLICATION OF THE AUGMENTED REALITY IN PRODUCTION PRACTICE , Applied Computer Science: Vol. 13 No. 2 (2017)
Similar Articles
- Ekhlas H. KARAM, Eman H. JADOO, DESIGN OF MODIFIED SECOND ORDER SLIDING MODE CONTROLLER BASED ON ST ALGORITHM FOR BLOOD GLUCOSE REGULATION SYSTEMS , Applied Computer Science: Vol. 16 No. 2 (2020)
- Irena NOWOTYŃSKA, Stanisław KUT, COMPARATIVE ANALYSIS OF THE IMPACT OF DIE DESIGN ON ITS LOAD AND DISTRIBUTION OF STRESS DURING EXTRUSION , Applied Computer Science: Vol. 14 No. 4 (2018)
- Svetlana RATNER, Pavel RATNER, DEA-BASED DYNAMIC ASSESSMENT OF REGIONAL ENVIRONMENTAL EFFICIENCY , Applied Computer Science: Vol. 13 No. 2 (2017)
- Łukasz GRABOWSKI, Arkadiusz DROZD, Mateusz KARABELA, Wojciech KARPIUK, AERODYNAMIC AND ROLLING RESISTANCES OF HEAVY DUTY VEHICLE. SIMULATION OF ENERGY CONSUMPTION , Applied Computer Science: Vol. 20 No. 3 (2024)
- Hakan AYDIN, Ahmet SERTBAŞ, CYBER SECURITY IN INDUSTRIAL CONTROL SYSTEMS (ICS): A SURVEY OF ROWHAMMER VULNERABILITY , Applied Computer Science: Vol. 18 No. 2 (2022)
- Marcin BADUROWICZ, DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS , Applied Computer Science: Vol. 18 No. 1 (2022)
- Andrzej Jardzioch, Wioletta Marczak, APPLICATION OF A FUZZY CONTROLLER IN THE PROCESS OF AUTOMATED POLYETHYLENE FILM THICKNESS CONTROL , Applied Computer Science: Vol. 17 No. 3 (2021)
- Raphael Olufemi AKINYEDE, Temitayo Elijah BALOGUN, Abiodun Boluwade ROTIMI, Oluwasefunmi Busola FAMODIMU, A CUSTOMER-CENTRIC APPLICATION FOR A CINEMA HOUSE , Applied Computer Science: Vol. 16 No. 2 (2020)
- Zbigniew CZYŻ, Paweł KARPIŃSKI, Krzysztof SKIBA, Szymon BARTKOWSKI, NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT , Applied Computer Science: Vol. 19 No. 3 (2023)
- Jolanta BRZOZOWSKA, Jakub PIZOŃ, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, Katarzyna PIOTROWSKA, DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY , Applied Computer Science: Vol. 19 No. 3 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.