DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY

Jolanta BRZOZOWSKA

d562@pollub.edu.pl
(Poland)

Jakub PIZOŃ


(Poland)
https://orcid.org/0000-0002-0806-6771

Gulzhan BAYTIKENOVA


(Kazakhstan)

Arkadiusz GOLA


(Poland)

Alfiya ZAKIMOVA


(Kazakhstan)
https://orcid.org/0000-0003-0413-0542

Katarzyna PIOTROWSKA


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Computerisation and Robotisation (Poland)

Abstract

The paper describes one of the methods of data acquisition in data mining models used to support decision-making. The study presents the possibilities of data collection using the phases of the CRISP-DM model for an organization and presents the possibility of adapting the model for analysis and management in the decisionmaking process. The first three phases of implementing the CRISP-DM model are described using data from an enterprise with small batch production as an example. The paper presents the CRISP-DM based model for data mining in the process of predicting assembly cycle time. The developed solution has been evaluated using real industrial data and will be a part of methodology that allows to estimate the assembly time of a finished product at the quotation stage, i.e., without the detailed technology of the product being known.


Keywords:

data engineering, data mining, CRISP-DM, assembly, process planning

Ayele, W.Y. (2020). Adapting CRISP-DM for idea mining a data mining process for generating ideas using a textual dataset. International Journal of Advanced Computer Science and Applications, 11,(6), 20–32. https://doi.org/10.14569/IJACSA.2020.0110603
DOI: https://doi.org/10.14569/IJACSA.2020.0110603   Google Scholar

Brzozowska, J., Gola, A. (2021). Computer aided assembly planning using MS Excel software – a case study. Applied Computer Science, 17(2), 70-89. https://doi.org/10.23743/acs-2021-14
DOI: https://doi.org/10.35784/acs-2021-14   Google Scholar

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth, R. (2000). CRISP-DM 1.0. Step-by-step data mining guide. SPSS. https://maestria-datamining-2010.googlecode.com/svnhistory/r282/trunk/dmct-teorica/tp1/CRISPWP-0800.pdf
  Google Scholar

Cheng, A. (2023), Evaluating Fintech insdustry’s risks: A preliminary analysis based on CRISP-DM framework. Finance Research Letters, 55(B), 103966. https://doi.org/10.1016/j.frl.2023.103966
DOI: https://doi.org/10.1016/j.frl.2023.103966   Google Scholar

Choudhary, A.K., Harding, J.A., Popplewell, K. (2006). Knowledge discovery for moderating collaborative projects. 4th IEEE International Conference on Industrial Informatics, (pp. 519–524). IEEE. https://doi.org/10.1109/INDIN.2006.275610
DOI: https://doi.org/10.1109/INDIN.2006.275610   Google Scholar

Frawley, W., Piatetsky-Shapiro, G., & Matheus, C. (1992). Knowledge Discovery in Databases: An Overview. AI Magazine, 13(2), 57. https://doi.org/10.1609/aimag.v13i3.1011
  Google Scholar

Gröger, C., Niedermann, F., & Mitschang B. (2012). Data mining-driven manufacturing process optimization. World congress on engineering, 14461305.
  Google Scholar

Han J., Kamber M., Pei J. (2011). Data Mining. Concepts and Techniques, Third Edition, The Morgan Kaufmann Series in Data Management Systems, San Francisco, CA. https://doi.org/10.1016/C2009-0- 61819-5
  Google Scholar

Hastie, T., Tibshirani, R., Friedman, J. H. (2001). The elements of statistical learning: Data mining, inference, and prediction, Second Edition, Springer Series in Statistics, New York, NY. https://doi.org/10.1007/978-0-387-84858-7:.
  Google Scholar

Huber, S., Wiemer, H., Schneider, D., Ihlenfeldt, S. (2018). DMME: Data mining methodology for engineering applications – a holistic extension to the CRISP-DM Model. Procedia CIRP, 79, 403-408, https://doi.org/10.1016/j.procir.2019.02.106
DOI: https://doi.org/10.1016/j.procir.2019.02.106   Google Scholar

Krcmar, H. (2015). Informationsmanagement. Springer Gabler, Berlin-Heidelberg.. https://doi.org/10.1007/978-3-662-45863-1
DOI: https://doi.org/10.1007/978-3-662-45863-1   Google Scholar

Laudon, K.C., Laudon J.P., & Schoder D. (2010). Wirtschaftsinformatik. Eine Einführung. Pearson Studium, München, Deutschland.
  Google Scholar

Martinez-Plumed F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., RamirezQuintana, M. J., Flach, P. (2019). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories, IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048-3061. . https://doi.org/10.1109/TKDE.2019.2962680
DOI: https://doi.org/10.1109/TKDE.2019.2962680   Google Scholar

Moutinho L., Huarng K.-H. (2015). Quantitative Modelling in Marketing and Management, World Scientific Publishing, Singapore.
DOI: https://doi.org/10.1142/9657   Google Scholar

Nisbet, R., Elder, J., Miner G. (2009). Handbook of Statistical Analysis and Data Mining Applications, Elsevier. https://doi.org/10.1016/B978-0-12-374765-5.X0001-0
DOI: https://doi.org/10.1016/B978-0-12-374765-5.X0001-0   Google Scholar

Rohanizadeh, S.S., Moghadam, M.B. (2009). A Proposed Data Mining Methodology and its Application to Industrial Procedures, Journal of Industrial Engineering, 37-50.
  Google Scholar

Santos, M., Azevedo, C. (2005). Data Mining – Descoberta de Conhecimento em Bases de Dados. FCA Publisher, https://hdl.handle.net/1822/19136Schröer, C., Kruse, F., Gómez, J. C. M. (2021). A Systematic Literature Review of Applying CRISP-DM Process Model. Procedia Computer Science, 181, 526-534. https://doi.org/10.1016/j.procs.2021.01.199
DOI: https://doi.org/10.1016/j.procs.2021.01.199   Google Scholar

Shearer, C. (2000). The CRISP-DM Model: The New Blueprint for Data Mining, Journal of Data Warehousing, 5(4), 13-22.
  Google Scholar

Smyth, P., Hand, D., & Mannila, H. (2001). Principles of Data Mining, The MIT Press, 026208290x.
  Google Scholar

Sturm, J. (2000). Hurtownie danych. SQL Server 7.0, Przewodnik techniczny. APN PROMISE.
  Google Scholar

Surma, J. (2009). Business Intelligence. Systemy wspomagania decyzji biznesowych. PWN, Warsaw.
  Google Scholar

Weller, J., Roesmann, D., Eggert, S., Von Enzberg, S., Gräßler, I. &, Dumitrescu, R. (2023). Identification and prediction of standard times in machining for precision steel tubes through the usage of data analytics. Procedia CIRP, 119, 514-520. https://doi.org/10.1016/j.procir.2023.01.011
DOI: https://doi.org/10.1016/j.procir.2023.01.011   Google Scholar

Zaskórski, P., & Pałka, D. (2012). Data Mining in decision-making processes. Warsaw School of Information Technology. Scientific Journals. 143-161.
  Google Scholar

Download


Published
2023-09-30

Cited by

BRZOZOWSKA, J., PIZOŃ, J., BAYTIKENOVA, G., GOLA, A., ZAKIMOVA, . A., & PIOTROWSKA, K. (2023). DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY . Applied Computer Science, 19(3), 83–95. https://doi.org/10.35784/acs-2023-26

Authors

Jolanta BRZOZOWSKA 
d562@pollub.edu.pl
Poland

Authors

Jakub PIZOŃ 

Poland
https://orcid.org/0000-0002-0806-6771

Authors

Gulzhan BAYTIKENOVA 

Kazakhstan

Authors

Arkadiusz GOLA 

Poland

Authors

Alfiya ZAKIMOVA 

Kazakhstan
https://orcid.org/0000-0003-0413-0542

Authors

Katarzyna PIOTROWSKA 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Computerisation and Robotisation Poland

Statistics

Abstract views: 839
PDF downloads: 588


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.