NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT
Article Sidebar
Open full text
Issue Vol. 19 No. 3 (2023)
-
A LATIN AMERICAN MARKET ASSET VOLATILITY ANALYSIS: A COMPARISON OF GARCH MODEL, ARTIFICIAL NEURAL NETWORKS AND SUPPORT VECTOR REGRESSION
Victor CHUNG, Jenny ESPINOZA1-16
-
IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY
Andrzej ŁUKASZEWICZ, Jerzy JÓZWIK, Kamil CYBUL17-27
-
FUZZY MULTIPLE CRITERIA GROUP DECISION-MAKING IN PERFORMANCE EVALUATION OF MANUFACTURING COMPANIES
Sara SALEHI28-46
-
NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT
Zbigniew CZYŻ, Paweł KARPIŃSKI, Krzysztof SKIBA, Szymon BARTKOWSKI47-63
-
EVALUATION OF SUPPORT VECTOR MACHINE BASED STOCK PRICE PREDICTION
Tilla IZSÁK, László MARÁK, Mihály ORMOS64-82
-
DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY
Jolanta BRZOZOWSKA, Jakub PIZOŃ, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, Katarzyna PIOTROWSKA83-95
-
ROTATION-GAMMA CORRECTION AUGMENTATION ON CNN-DENSE BLOCK FOR SOIL IMAGE CLASSIFICATION
Sri INDRA MAIYANTI, Anita DESIANI, Syafrina LAMIN, P PUSPITAHATI, Muhammad ARHAMI, Nuni GOFAR, Destika CAHYANA96-115
-
RETRACTED PAPER: Enhancing 3D human pose estimation through multi-feature fusion
Xianlei GE, Vladimir MARIANO116-132
-
ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK
Md. Torikur RAHMAN, Mohammad ALAUDDIN, Uttam Kumar DEY, Dr. A.H.M. Saifullah SADI133-159
-
PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU
Erizal ERIZAL, Mohammad DIQI160-173
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
The study involved a numerical analysis of the water dropping process by fixed-wing aircraft. This method, also known as air attack, is used for aerial firefighting, primarily in green areas such as forests and meadows. The conducted calculations allowed for the analysis of the process over time. The calculations were performed based on a SolidWorks model of the M18B Dromader aircraft. After defining the computational domain and setting the boundary conditions, the simulations were carried out using the ANSYS Fluent software. The resulting water dropping area was used to analyze the intensity of water distribution. The volumetric distribution and airflow velocity distribution were analyzed for specified time steps. The boundary layer where air no longer mixes with water during the final phase of water dropping was also determined. The obtained results provide an important contribution to further analyses aimed at optimizing the water dropping process by fixed-wing aircraft.
Keywords:
References
Ahlgren, L. (2020, September 3). Boeing 747 Supertanker - The World's Largest Fire-Fighting Plane. Simple Flying. https://simpleflying.com/boeing-747-supertanker/
Amorim, J. H. (2008). Numerical modelling of the aerial drop of products for forest firefighting. Doctoral dissertation, Universidade de Aveiro (Portugal).
Amorim, J. H. (2011). Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part I: model development. International Journal of Wildland Fire, 20(3), 384-393. https://doi.org/10.1071/WF09122 DOI: https://doi.org/10.1071/WF09122
Amorim, J. H. (2011). Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part II: model validation. International Journal of Wildland Fire, 20(3), 394-406. https://doi.org/10.1071/WF09123 DOI: https://doi.org/10.1071/WF09123
Amorim, J. H., Borrego, C., & Miranda, A. I. (2008). An operational dropping model towards efficient aerial firefighting. WIT Transactions on Ecology and the Environment, 119, 51-60. https://doi.org/10.2495/FIVA080061 DOI: https://doi.org/10.2495/FIVA080061
Ardil, C. (2023). aerial firefighting aircraft selection with standard fuzzy sets using multiple criteria group decision making analysis. International Journal of Transport and Vehicle Engineering, 17(4), 136-145. https://publications.waset.org/10013052/pdf
Chaikalis, D., Evangeliou, N., Tzes, A., & Khorrami, F. (2022). Design, modelling, localization, and control for fire-fighting aerial vehicles. 2022 30th Mediterranean Conference on Control and Automation (MED) (pp. 432-437). IEEE. https://doi.org/10.1109/MED54222.2022.9837053 DOI: https://doi.org/10.1109/MED54222.2022.9837053
Clifford, R. M. S., Hoermann, S., Marcadet, N., Oliver, H., Billinghurst, M., & Lindeman, R. W. (2018). Evaluating the effects of realistic communication disruptions in VR training for aerial firefighting. 2018 10th International conference on virtual worlds and games for serious applications (VS-Games) (pp. 1-8). IEEE. https://doi.org/10.1109/VS-Games.2018.8493423 DOI: https://doi.org/10.1109/VS-Games.2018.8493423
Clifford, R. M. S., Khan, H., Hoermann, S., Billinghurst, M., & Lindeman, R. W. (2018). The effect of immersive displays on situation awareness in virtual environments for aerial firefighting air attack supervisor training. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 1-2). IEEE. https://doi.org/10.1109/VR.2018.8446139 DOI: https://doi.org/10.1109/VR.2018.8446139
Czyż, Z., & Karpiński, P. (2020). Aerodynamic characteristics of the X-tail stabilizer in a hybrid unmanned aircraft. International Journal of Simulation Modelling, 19(4), 631-642. https://doi.org/10.2507/IJSIMM19-4-534 DOI: https://doi.org/10.2507/IJSIMM19-4-534
Czyż, Z., Karpiński, P., Skiba, K., & Wendeker, M. (2022). Measurements of Aerodynamic Performance of the Fuselage of a Hybrid Multi-Rotor Aircraft with Autorotation Capability. International Review of Aerospace Engineering (IREASE), 15(1), 12-23. https://doi.org/10.15866/irease.v15i1.21319 DOI: https://doi.org/10.15866/irease.v15i1.21319
Goraj, Z., Frydrychewicz, A., Ransom, E. C. P., Self, A., & Wagstaff, P. (2001). Aerodynamic, dynamic and conceptual design of a fire-fighting aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 215(3), 125-146. https://doi.org/10.1243/0954410011533121 DOI: https://doi.org/10.1243/0954410011533121
Han, Y., Liu, H., Tian, Y., Chen, Z., & Nie, Z. (2018). Virtual reality oriented modeling and simulation of water-dropping from helicopter. In Proceedings of the 2018 International Conference on Artificial Intelligence and Virtual Reality (pp. 24-29). https://doi.org/10.1145/3293663.3293669 DOI: https://doi.org/10.1145/3293663.3293669
Ito, T., Kato, H., Goda, Y., Tagawa, S., & Negishi, E. (2010). Water-dropping aerodynamics for fire-fighting amphibian. 27th International Congress of the Aeronautical Sciences (ICAS) (pp. 1-10). http://icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/333.PDF
Kal’avský, P., Petríček, P., Kelemen, M., Rozenberg, R., Jevčák, J., Tomaško, R., & Mikula, B. (2019). The efficiency of aerial firefighting in varying flying conditions. 2019 International Conference on Military Technologies (ICMT) (pp. 1-5). IEEE. https://doi.org/10.1109/MILTECHS.2019.8870050 DOI: https://doi.org/10.1109/MILTECHS.2019.8870050
Kliment, L. K., Rokhsaz, K., Nelson, J., Terning, B., & Weinstein, E. M. (2015). usage and flight loads analysis of king airs in aerial firefighting missions. Journal of Aircraft, 52(3), 910-916. https://doi.org/10.2514/1.C032877 DOI: https://doi.org/10.2514/1.C032877
Konishi, T., Kikugawa, H., Iwata, Y., Koseki, H., Sagae, K., Ito, A., & Kato, K. (2008). Aerial firefighting against urban fire: Mock-up house experiments of fire suppression by helicopters. Fire Safety Journal, 43(5), 363-375. https://doi.org/10.1016/j.firesaf.2007.10.005 DOI: https://doi.org/10.1016/j.firesaf.2007.10.005
Oleksiak, J. et al. (1975) Preliminary design of agricultural airplane M-18, PZL Mielec - Research and Development Center, Poland. https://pzlmielec.pl/en/company/company-profile-and-history
Qureshi, S., & Altman, A. (2018). Studying fluid breakup and dispersion to predict aerial firefighting ground drop patterns. 2018 AIAA Aerospace Sciences Meeting, 1047. https://doi.org/10.2514/6.2018-1047 DOI: https://doi.org/10.2514/6.2018-1047
Satoh, K., Kuwahara, K., & Yang, K. T. (2004). A numerical study of forest fire progression and fire suppression by aerial fire fighting. ASME International Mechanical Engineering Congress and Exposition (IMECE2004) (pp. 79-86). https://doi.org/10.1115/IMECE2004-60679 DOI: https://doi.org/10.1115/IMECE2004-60679
Satoh, K., Maeda, I., Kuwahara, K., & Yang, K. (2005). A numerical study of water dump in aerial fire fighting. Fire Safety Science – Proceedings of the Eighth International Symposium, 8, 777-787. https://publications.iafss.org/publications/fss/8/777/view/fss_8-777.pdf DOI: https://doi.org/10.3801/IAFSS.FSS.8-777
Satoh, K., Sagae, K., Kuwahara, K., & Yang, K. T. (2000). Experiments and Numerical Simulations of Flow Patterns of Water Droplets From Fire-Fighting Helicopters. ASME International Mechanical Engineering Congress and Exposition (IMECE2000), 5(5-10), 57-64. https://doi.org/10.1115/IMECE2000-1560 DOI: https://doi.org/10.1115/IMECE2000-1560
Tsujimura, H., Kubota, K., & Sato, T. (2022). Numerical Analysis of Aerial Firefighting Using Grid–Particle Coupling Method. In AIAA SCITECH 2022 Forum, 0450. https://doi.org/10.2514/6.2022-0450 DOI: https://doi.org/10.2514/6.2022-0450
Varner, D., Kliment, L. K., & Rokhsaz, K. (2019). The aerodynamics of a civil transport in aerial firefighting. AIAA Aviation 2019 Forum, 3697. https://doi.org/10.2514/6.2019-3697 DOI: https://doi.org/10.2514/6.2019-3697
Wang, X., Liu, H., Tian, Y., Chen, Z., & Cai, Z. (2021). A fast optimization method of water-dropping scheme for fixed-wing firefighting aircraft. IEEE Access, 9, 120815-120832. https://doi.org/10.1109/ACCESS.2021.3106538 DOI: https://doi.org/10.1109/ACCESS.2021.3106538
Walton, B. (2018, July 30). Classic MD-87s Still Earning a Living as Aerial Firefighting Tankers. Avgeekery.com. Tankers https://avgeekery.com/classic-md-87s-still-earning-a-living-as-aerial-firefighting
Zhao, X., Zhou, P., Yan, X., Weng, Y., & Yang, X. L. (2018). Numerical simulation of the aerial drop of water for fixed wing airtankers. 31st Congress of the International Council of the Aeronautic Sciences, 1-10. https://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0474_paper.pdf
Zhou, T., Lu, J., Wu, C., & Lan, S. (2022). Numerical calculation and analysis of water dump distribution out of the belly tanks of firefighting helicopters. Safety, 8(4), 69. https://doi.org/10.3390/safety8040069 DOI: https://doi.org/10.3390/safety8040069
Zohdi, T. I. (2021). A digital twin framework for machine learning optimization of aerial fire fighting and pilot safety. Computer Methods in Applied Mechanics and Engineering, 373, 113446. https://doi.org/10.1016/j.cma.2020.113446 DOI: https://doi.org/10.1016/j.cma.2020.113446
Article Details
Abstract views: 619
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
