THE APPLICATION OF MACHINE LEARNING ON THE SENSORS OF SMARTPHONES TO DETECT FALLS IN REAL-TIME
Article Sidebar
Open full text
Issue Vol. 13 No. 2 (2023)
-
NOVEL HYBRID ALGORITHM USING CONVOLUTIONAL AUTOENCODER WITH SVM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY AND ULTRASOUND COMPUTED TOMOGRAPHY
Łukasz Maciura, Dariusz Wójcik, Tomasz Rymarczyk, Krzysztof Król4-9
-
ANALYSIS OF POWER AND ENERGY PARAMETERS OF THE CONVEYOR INFRARED DRYER OF OIL-CONTAINING RAW MATERIALS
Igor Palamarchuk, Vladyslav Palamarchuk, Vadim Paziuk, Ruslan Hulevych, Aliya Kalizhanova, Magzhan Sarsembayev10-14
-
OPTIMIZATION OF RESOURCE ALLOCATION, EXPOSURE TIME AND ROTARY SPEED OF INCUBATIVE EGGS
Dmytro Milenin, Mykola Lysychenko, Andriy Milenin, Leonid Koval, Saltanat Amirgaliyeva, Maxatbek Satymbekov, Saltanat Adikanova15-19
-
DEVELOPMENT OF AN APPLICATION FOR THE THERMAL PROCESSING OF OIL SLIME IN THE INDUSTRIAL OIL AND GAS SECTOR
Gulnar Balakayeva, Gaukhar Kalmenova, Dauren Darkenbayev, Christofer Phillips20-26
-
AUTOMATED DEFINITION OF THE DISCRETE ELEMENTS INTERACTIONS IN WORKSPACE OF EQUIPMENT
Gregory Tymchyk, Volodymyr Skytsiouk, Tatiana Klotchko, Leonid Polishchuk, Anatolii Hrytsak, Saule Rakhmetullina, Beibut Amirgaliyev27-35
-
TONTOR ZONES MODEL FOR AUTOMATIVE OBJECT MONITORING
Gregory Tymchyk, Volodymyr Skytsiouk, Tatiana Klotchko, Roman Akselrod, Valerii Shenfeld, Aliya Kalizhanova, Didar Yedilkhan, Gaukhar Borankulova36-43
-
THEORETICAL AND EXPERIMENTAL SUBSTANTIATION OF THE EXTRACTION PROCESS WITH THINNING BIMETALLIC TUBULAR ELEMENTS OF DISSIMILAR METALS AND ALLOYS
Viacheslav Titov, Olexandr Mozghovyi, Ruslan Borys, Mykola Bogomolov, Yedilkhan Amirgaliyev, Zhalau Aitkulov44-49
-
THE APPLICATION OF MACHINE LEARNING ON THE SENSORS OF SMARTPHONES TO DETECT FALLS IN REAL-TIME
Achraf Benba, Mouna Akki, Sara Sandabad50-55
-
CONVOLUTIONAL NEURAL NETWORKS FOR EARLY COMPUTER DIAGNOSIS OF CHILD DYSPLASIA
Yosyp Bilynsky, Aleksandr Nikolskyy, Viktor Revenok, Vasyl Pogorilyi, Saule Smailova, Oksana Voloshina, Saule Kumargazhanova56-63
-
CARDIOMETABOLIC RISK PREDICTION IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE COMBINED WITH SUBCLINICAL HYPOTHYROIDISM
Olena Kolesnikova, Olena Vysotska, Anna Potapenko, Anastasia Radchenko, Anna Trunova, Natalia Virstyuk, Liudmyla Vasylevska-Skupa, Aliya Kalizhanova, Nazerka Mukanova64-68
-
LOCAL DIFFERENCE THRESHOLD LEARNING IN FILTERING NORMAL WHITE NOISE
Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Natalia Kalashnik, Iryna Shvarts, Vladyslav Plisenko, Dmytro Zhuk, Saule Kumargazhanova69-73
-
MODELING AND ANALYSIS OF THE CHARACTERISTICS OF MULTICHANNEL AND MULTI-NODE COMPUTER NETWORKS WITH PRIORITY SERVICE
Zakir Nasib Huseynov, Mahil Isa Mammadov, Togrul Atabay Ismayilov74-77
-
STATISTICAL METHODS FOR EVALUATING EXPERIMENTAL DATA ON THE USE OF MATHEMATICAL COMPETENCIES IN STUDY FOR A RESILIENT ECONOMY
Vira Petruk, Olena Prozor, Yuliia Sabadosh, Iryna Baranovska, Maksim Palii, Yevheniia Moroz, Saule Kumargazhanova, Dinara Mussayeva78-85
-
SIMULATION OF THE INFLUENCE OF INVESTMENT AND INNOVATION ACTIVITIES ON ENSURING THE INTERNATIONAL COMPETITIVENESS OF COUNTRIES
Olena Liutak, Olena Baula, Anatolii Tkachuk86-92
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
With the increasing prevalence of smartphones, they now come equipped with a multitude of sensors such as GPS, microphones, cameras, magnetometers, accelerators, and more, which can simplify our daily lives. When it comes to healthcare, smartphones can become indispensable. The detection of geriatric falls is crucial as even the slightest injury can have fatal consequences. Therefore, we proposed the use of accelerometers in our research to detect falls in the elderly. Our project involved the development of an automated, continuous, and reliable monitoring system that would generate a list of elderly people at risk of falling and present it on a webpage for emergency services. This approach aimed to minimize the long-term impacts and save lives promptly. We started by developing a mobile application and used MATLAB to classify the falls as either "fall" or "not fall." Finally, we created a webpage that would facilitate communication between the mobile application and MATLAB.
Keywords:
References
Bouilly M., Thélot B.: Les accidents de la vie courante aux urgences en France métropolitaine en 2010 selon l’enquête EPAC. Revue d'Épidémiologie et de Santé Publique 60, 2012, S145. DOI: https://doi.org/10.1016/j.respe.2012.06.382
Cherkassky V., Ma Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks 17(1), 2004, 113–126 [http://doi.org/10.1016/S0893-6080(03)00169-2]. DOI: https://doi.org/10.1016/S0893-6080(03)00169-2
El Attaoui A. et al.: Machine learning‐based edge‐computing on a multi‐level architecture of WSN and IoT for real‐time fall detection. IET Wireless Sensor Systems 10(6), 2020, 320–332 [http://doi.org/10.1049/iet-wss.2020.0091]. DOI: https://doi.org/10.1049/iet-wss.2020.0091
Enterprise J.: HTML, PHP, dan MySQL untuk Pemula. Elex Media Komputindo 2018.
Er P. V., Tan K. K.: Non-intrusive fall detection monitoring for the elderly based on fuzzy logic. Measurement 124, 2018, 91–102 [http://doi.org/10.1016/j.measurement.2018.04.009]. DOI: https://doi.org/10.1016/j.measurement.2018.04.009
Fukunaga K.: Introduction to statistical pattern recognition. Elsevier 2013.
Guo G. et al.: KNN model-based approach in classification. Lecture Notes in Computer Science 2888, 2003 [http://doi.org/10.1007/978-3-540-39964-3_62]. DOI: https://doi.org/10.1007/978-3-540-39964-3_62
James K.: Falls and Fall Prevention in the Elderly. West Indian Med J. 56(6), 2007, 534.
Le H. L. et al.: A novel feature set extraction based on accelerometer sensor data for improving the fall detection system. Electronics 11(7), 2022, 1030 [http://doi.org/10.3390/electronics11071030]. DOI: https://doi.org/10.3390/electronics11071030
Li D., Wu M.: Pattern recognition receptors in health and diseases. Signal transduction and targeted therapy 6(1), 2021, 291 [http://doi.org/10.1038/s41392-021-00687-0]. DOI: https://doi.org/10.1038/s41392-021-00687-0
Noury N. et al.: Fall detection-principles and methods. 29th annual international conference of the IEEE engineering in medicine and biology society, 2007, 1663–1666 [http://doi.org/10.1109/IEMBS.2007.4352627]. DOI: https://doi.org/10.1109/IEMBS.2007.4352627
Pannurat N. et al.: Automatic fall monitoring: A review. Sensors 14(7), 2014, 12900–12936 [http://doi.org/10.3390/s140712900]. DOI: https://doi.org/10.3390/s140712900
Patton E. W.: MIT app inventor: Objectives, design, and development. Computational thinking education, 2019, 31–49 [http://doi.org/10.1007/978-981-13-6528-7]. DOI: https://doi.org/10.1007/978-981-13-6528-7_3
Rashid F. A.: Simulation of SisFall Dataset for Fall Detection Using MATLAB Classifier Algorithms. 12th International Symposium on Parallel Architectures, Algorithms and Programming – PAAP, 2021, 62–68, [http://doi.org/10.1109/PAAP54281.2021.9720481]. DOI: https://doi.org/10.1109/PAAP54281.2021.9720481
Sucerquia A. et al.: SisFall: A fall and movement dataset. Sensors 17(1), 2017, 198 [http://doi.org/10.3390/s17010198]. DOI: https://doi.org/10.3390/s17010198
World Health Organization: Ageing, Life Course Unit. WHO global report on falls prevention in older age. World Health Organization; 2008.
Zhang S. et al.: Learning k for kNN classification. ACM Transactions on Intelligent Systems and Technology 8(3), 2017, 1–9 [http://doi.org/10.1145/2990508]. DOI: https://doi.org/10.1145/2990508
Article Details
Abstract views: 223
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
