THE APPLICATION OF MACHINE LEARNING ON THE SENSORS OF SMARTPHONES TO DETECT FALLS IN REAL-TIME

Achraf Benba

achraf.benba@um5s.net.ma
Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies (Morocco)
https://orcid.org/0000-0001-7939-0790

Mouna Akki


Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies (Morocco)
http://orcid.org/0009-0001-8532-1158

Sara Sandabad


Hassan II University of Casablanca, Ecole Normale Supérieure de l'Enseignement Technique de Mohammadia, Electrical Engineering and Intelligent Systems (Morocco)
http://orcid.org/0000-0002-0813-6178

Abstract

With the increasing prevalence of smartphones, they now come equipped with a multitude of sensors such as GPS, microphones, cameras, magnetometers, accelerators, and more, which can simplify our daily lives. When it comes to healthcare, smartphones can become indispensable. The detection of geriatric falls is crucial as even the slightest injury can have fatal consequences. Therefore, we proposed the use of accelerometers in our research to detect falls in the elderly. Our project involved the development of an automated, continuous, and reliable monitoring system that would generate a list of elderly people at risk of falling and present it on a webpage for emergency services. This approach aimed to minimize the long-term impacts and save lives promptly. We started by developing a mobile application and used MATLAB to classify the falls as either "fall" or "not fall." Finally, we created a webpage that would facilitate communication between the mobile application and MATLAB.


Keywords:

fall detection, smartphone accelerometers, SVM, KNN, machine learning

Bouilly M., Thélot B.: Les accidents de la vie courante aux urgences en France métropolitaine en 2010 selon l’enquête EPAC. Revue d'Épidémiologie et de Santé Publique 60, 2012, S145.
DOI: https://doi.org/10.1016/j.respe.2012.06.382   Google Scholar

Cherkassky V., Ma Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks 17(1), 2004, 113–126 [http://doi.org/10.1016/S0893-6080(03)00169-2].
DOI: https://doi.org/10.1016/S0893-6080(03)00169-2   Google Scholar

El Attaoui A. et al.: Machine learning‐based edge‐computing on a multi‐level architecture of WSN and IoT for real‐time fall detection. IET Wireless Sensor Systems 10(6), 2020, 320–332 [http://doi.org/10.1049/iet-wss.2020.0091].
DOI: https://doi.org/10.1049/iet-wss.2020.0091   Google Scholar

Enterprise J.: HTML, PHP, dan MySQL untuk Pemula. Elex Media Komputindo 2018.
  Google Scholar

Er P. V., Tan K. K.: Non-intrusive fall detection monitoring for the elderly based on fuzzy logic. Measurement 124, 2018, 91–102 [http://doi.org/10.1016/j.measurement.2018.04.009].
DOI: https://doi.org/10.1016/j.measurement.2018.04.009   Google Scholar

Fukunaga K.: Introduction to statistical pattern recognition. Elsevier 2013.
  Google Scholar

Guo G. et al.: KNN model-based approach in classification. Lecture Notes in Computer Science 2888, 2003 [http://doi.org/10.1007/978-3-540-39964-3_62].
DOI: https://doi.org/10.1007/978-3-540-39964-3_62   Google Scholar

James K.: Falls and Fall Prevention in the Elderly. West Indian Med J. 56(6), 2007, 534.
  Google Scholar

Le H. L. et al.: A novel feature set extraction based on accelerometer sensor data for improving the fall detection system. Electronics 11(7), 2022, 1030 [http://doi.org/10.3390/electronics11071030].
DOI: https://doi.org/10.3390/electronics11071030   Google Scholar

Li D., Wu M.: Pattern recognition receptors in health and diseases. Signal transduction and targeted therapy 6(1), 2021, 291 [http://doi.org/10.1038/s41392-021-00687-0].
DOI: https://doi.org/10.1038/s41392-021-00687-0   Google Scholar

Noury N. et al.: Fall detection-principles and methods. 29th annual international conference of the IEEE engineering in medicine and biology society, 2007, 1663–1666 [http://doi.org/10.1109/IEMBS.2007.4352627].
DOI: https://doi.org/10.1109/IEMBS.2007.4352627   Google Scholar

Pannurat N. et al.: Automatic fall monitoring: A review. Sensors 14(7), 2014, 12900–12936 [http://doi.org/10.3390/s140712900].
DOI: https://doi.org/10.3390/s140712900   Google Scholar

Patton E. W.: MIT app inventor: Objectives, design, and development. Computational thinking education, 2019, 31–49 [http://doi.org/10.1007/978-981-13-6528-7].
DOI: https://doi.org/10.1007/978-981-13-6528-7_3   Google Scholar

Rashid F. A.: Simulation of SisFall Dataset for Fall Detection Using MATLAB Classifier Algorithms. 12th International Symposium on Parallel Architectures, Algorithms and Programming – PAAP, 2021, 62–68, [http://doi.org/10.1109/PAAP54281.2021.9720481].
DOI: https://doi.org/10.1109/PAAP54281.2021.9720481   Google Scholar

Sucerquia A. et al.: SisFall: A fall and movement dataset. Sensors 17(1), 2017, 198 [http://doi.org/10.3390/s17010198].
DOI: https://doi.org/10.3390/s17010198   Google Scholar

World Health Organization: Ageing, Life Course Unit. WHO global report on falls prevention in older age. World Health Organization; 2008.
  Google Scholar

Zhang S. et al.: Learning k for kNN classification. ACM Transactions on Intelligent Systems and Technology 8(3), 2017, 1–9 [http://doi.org/10.1145/2990508].
DOI: https://doi.org/10.1145/2990508   Google Scholar

Download


Published
2023-06-30

Cited by

Benba, A., Akki, M., & Sandabad, S. (2023). THE APPLICATION OF MACHINE LEARNING ON THE SENSORS OF SMARTPHONES TO DETECT FALLS IN REAL-TIME. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(2), 50–55. https://doi.org/10.35784/iapgos.3459

Authors

Achraf Benba 
achraf.benba@um5s.net.ma
Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies Morocco
https://orcid.org/0000-0001-7939-0790

Authors

Mouna Akki 

Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies Morocco
http://orcid.org/0009-0001-8532-1158

Authors

Sara Sandabad 

Hassan II University of Casablanca, Ecole Normale Supérieure de l'Enseignement Technique de Mohammadia, Electrical Engineering and Intelligent Systems Morocco
http://orcid.org/0000-0002-0813-6178

Statistics

Abstract views: 141
PDF downloads: 153