THE APPLICATION OF MACHINE LEARNING ON THE SENSORS OF SMARTPHONES TO DETECT FALLS IN REAL-TIME
Achraf Benba
achraf.benba@um5s.net.maMohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies (Morocco)
https://orcid.org/0000-0001-7939-0790
Mouna Akki
Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies (Morocco)
http://orcid.org/0009-0001-8532-1158
Sara Sandabad
Hassan II University of Casablanca, Ecole Normale Supérieure de l'Enseignement Technique de Mohammadia, Electrical Engineering and Intelligent Systems (Morocco)
http://orcid.org/0000-0002-0813-6178
Abstract
With the increasing prevalence of smartphones, they now come equipped with a multitude of sensors such as GPS, microphones, cameras, magnetometers, accelerators, and more, which can simplify our daily lives. When it comes to healthcare, smartphones can become indispensable. The detection of geriatric falls is crucial as even the slightest injury can have fatal consequences. Therefore, we proposed the use of accelerometers in our research to detect falls in the elderly. Our project involved the development of an automated, continuous, and reliable monitoring system that would generate a list of elderly people at risk of falling and present it on a webpage for emergency services. This approach aimed to minimize the long-term impacts and save lives promptly. We started by developing a mobile application and used MATLAB to classify the falls as either "fall" or "not fall." Finally, we created a webpage that would facilitate communication between the mobile application and MATLAB.
Keywords:
fall detection, smartphone accelerometers, SVM, KNN, machine learningReferences
Bouilly M., Thélot B.: Les accidents de la vie courante aux urgences en France métropolitaine en 2010 selon l’enquête EPAC. Revue d'Épidémiologie et de Santé Publique 60, 2012, S145.
DOI: https://doi.org/10.1016/j.respe.2012.06.382
Google Scholar
Cherkassky V., Ma Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks 17(1), 2004, 113–126 [http://doi.org/10.1016/S0893-6080(03)00169-2].
DOI: https://doi.org/10.1016/S0893-6080(03)00169-2
Google Scholar
El Attaoui A. et al.: Machine learning‐based edge‐computing on a multi‐level architecture of WSN and IoT for real‐time fall detection. IET Wireless Sensor Systems 10(6), 2020, 320–332 [http://doi.org/10.1049/iet-wss.2020.0091].
DOI: https://doi.org/10.1049/iet-wss.2020.0091
Google Scholar
Enterprise J.: HTML, PHP, dan MySQL untuk Pemula. Elex Media Komputindo 2018.
Google Scholar
Er P. V., Tan K. K.: Non-intrusive fall detection monitoring for the elderly based on fuzzy logic. Measurement 124, 2018, 91–102 [http://doi.org/10.1016/j.measurement.2018.04.009].
DOI: https://doi.org/10.1016/j.measurement.2018.04.009
Google Scholar
Fukunaga K.: Introduction to statistical pattern recognition. Elsevier 2013.
Google Scholar
Guo G. et al.: KNN model-based approach in classification. Lecture Notes in Computer Science 2888, 2003 [http://doi.org/10.1007/978-3-540-39964-3_62].
DOI: https://doi.org/10.1007/978-3-540-39964-3_62
Google Scholar
James K.: Falls and Fall Prevention in the Elderly. West Indian Med J. 56(6), 2007, 534.
Google Scholar
Le H. L. et al.: A novel feature set extraction based on accelerometer sensor data for improving the fall detection system. Electronics 11(7), 2022, 1030 [http://doi.org/10.3390/electronics11071030].
DOI: https://doi.org/10.3390/electronics11071030
Google Scholar
Li D., Wu M.: Pattern recognition receptors in health and diseases. Signal transduction and targeted therapy 6(1), 2021, 291 [http://doi.org/10.1038/s41392-021-00687-0].
DOI: https://doi.org/10.1038/s41392-021-00687-0
Google Scholar
Noury N. et al.: Fall detection-principles and methods. 29th annual international conference of the IEEE engineering in medicine and biology society, 2007, 1663–1666 [http://doi.org/10.1109/IEMBS.2007.4352627].
DOI: https://doi.org/10.1109/IEMBS.2007.4352627
Google Scholar
Pannurat N. et al.: Automatic fall monitoring: A review. Sensors 14(7), 2014, 12900–12936 [http://doi.org/10.3390/s140712900].
DOI: https://doi.org/10.3390/s140712900
Google Scholar
Patton E. W.: MIT app inventor: Objectives, design, and development. Computational thinking education, 2019, 31–49 [http://doi.org/10.1007/978-981-13-6528-7].
DOI: https://doi.org/10.1007/978-981-13-6528-7_3
Google Scholar
Rashid F. A.: Simulation of SisFall Dataset for Fall Detection Using MATLAB Classifier Algorithms. 12th International Symposium on Parallel Architectures, Algorithms and Programming – PAAP, 2021, 62–68, [http://doi.org/10.1109/PAAP54281.2021.9720481].
DOI: https://doi.org/10.1109/PAAP54281.2021.9720481
Google Scholar
Sucerquia A. et al.: SisFall: A fall and movement dataset. Sensors 17(1), 2017, 198 [http://doi.org/10.3390/s17010198].
DOI: https://doi.org/10.3390/s17010198
Google Scholar
World Health Organization: Ageing, Life Course Unit. WHO global report on falls prevention in older age. World Health Organization; 2008.
Google Scholar
Zhang S. et al.: Learning k for kNN classification. ACM Transactions on Intelligent Systems and Technology 8(3), 2017, 1–9 [http://doi.org/10.1145/2990508].
DOI: https://doi.org/10.1145/2990508
Google Scholar
Authors
Achraf Benbaachraf.benba@um5s.net.ma
Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies Morocco
https://orcid.org/0000-0001-7939-0790
Authors
Mouna AkkiMohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies Morocco
http://orcid.org/0009-0001-8532-1158
Authors
Sara SandabadHassan II University of Casablanca, Ecole Normale Supérieure de l'Enseignement Technique de Mohammadia, Electrical Engineering and Intelligent Systems Morocco
http://orcid.org/0000-0002-0813-6178
Statistics
Abstract views: 141PDF downloads: 153
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Achraf Benba, Abdelilah Kerchaoui, AUTOMATIC DETECTION OF ALZHEIMER'S DISEASE BASED ON ARTIFICIAL INTELLIGENCE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)
- Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch, COMPREHENSIVE MACHINE LEARNING AND DEEP LEARNING APPROACHES FOR PARKINSON'S DISEASE CLASSIFICATION AND SEVERITY ASSESSMENT , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 4 (2023)
- Achraf Benba, Fatima Zahra El Attaoui, Sara Sandabad, IMPLEMENTATION OF AN ARTIFICIAL INTELLIGENCE-BASED ECG ACQUISITION SYSTEM FOR THE DETECTION OF CARDIAC ABNORMALITIES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)
- Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch, CLASSIFICATION OF PARKINSON’S DISEASE AND OTHER NEUROLOGICAL DISORDERS USING VOICE FEATURES EXTRACTION AND REDUCTION TECHNIQUES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)