IMPROVEMENT OF THE ALGORITHM FOR SETTING THE CHARACTERISTICS OF INTERPOLATION MONOTONE CURVE

Yuliia Kholodniak

yuliya.kholodnyak@tsatu.edu.ua
Dmytro Motornyi Tavria State Agrotechnological University, Department of Computer Sciences (Ukraine)
https://orcid.org/0000-0001-8966-9269

Yevhen Havrylenko


Dmytro Motornyi Tavria State Agrotechnological University, Department of Engineering Mechanics and Computer Design (Ukraine)
https://orcid.org/0000-0003-4501-445X

Serhii Halko


Dmytro Motornyi Tavria State Agrotechnological University, Department of Electrical Engineering and Electromechanics named after Prof. V.V. Ovharov (Ukraine)
https://orcid.org/0000-0001-7991-0311

Volodymyr Hnatushenko


Dnipro University of Technology, Department of Information Technologies and Computer Engineering (Ukraine)
https://orcid.org/0000-0003-3140-3788

Olena Suprun


Dmytro Motornyi Tavria State Agrotechnological University, Department of Foreign Languages (Ukraine)
https://orcid.org/0000-0003-4369-712X

Tatiana Volina


National University of Life and Environmental Sciences of Ukraine, Department of Descriptive Geometry, Computer Graphics and Design (Ukraine)
https://orcid.org/0000-0001-8610-2208

Oleksandr Miroshnyk


State Biotechnological University, Department of Electricity Supply and Energy Management (Ukraine)
https://orcid.org/0000-0002-6144-7573

Taras Shchur


Cyclone Manufacturing Inc, Mississauga, Ontario, Canada (Canada)
https://orcid.org/0000-0003-0205-032X

Abstract

Interpolation of a point series is a necessary step in solving such problems as building graphs de-scribing phenomena or processes, as well as modelling based on a set of reference points of the line frames defining the surface. To obtain an adequate model, the following conditions are imposed upon the interpolating curve: a minimum number of singular points (kinking points, inflection points or points of extreme curvature) and a regular curvature change along the curve. The aim of the work is to develop the algorithm for assigning characteristics (position of normals and curvature value) to the interpolating curve at reference points, at which the curve complies with the specified conditions. The characteristics of the curve are assigned within the area of their possible location. The possibilities of the proposed algorithm are investigated by interpolating the point series assigned to the branches of the parabola. In solving the test example, deviations of the normals and curvature radii from the corresponding characteristics of the original curve have been determined. The values obtained confirm the correctness of the solutions proposed in the paper.


Keywords:

interpolation, monotone curve, singular points, normal, centre of curvature, evolute, curvature radius

Argyros I. K., George S.: On the convergence of Newton-like methods restricted domains. Numer. Algorithms 75(3), 2017, 553-567 [http://doi.org/10.1007/s11075-016-0211-y].
DOI: https://doi.org/10.1007/s11075-016-0211-y   Google Scholar

Bucsa S., Serban A., Balan M. C., Ionita C., Nastase G., Dobre C., Dobrovicescu A.: Exergetic Analysis of a Cryogenic Air Separation Unit. Entropy 24, 2022, 272 [http://doi.org/10.3390/e24020272].
DOI: https://doi.org/10.3390/e24020272   Google Scholar

Chekalin A. A., Reshetnikov M. K., Shpilev V. V., Borodulina S. V.: Design of Engineering Surfaces Using Quartic Parabolas. IOP Conf. Ser.: Mater. Sci. Eng. 2007, 012015 [http://doi.org/10.1088/1755-1315/221/1/012015].
DOI: https://doi.org/10.1088/1757-899X/221/1/012015   Google Scholar

Farin G., Rein G., Sapidis N., Worsey A. J.: Fairing cubic B-spline curves. Computer Aided Geom. Des. 4(1–2), 1987, 91-103 [http://doi.org/10.1016/0167-8396(87)90027-6].
DOI: https://doi.org/10.1016/0167-8396(87)90027-6   Google Scholar

Fooladi M., Foroud A. A.: Recognition and assessment of different factors which affect flicker in wind turbine. IET Renew. Power Gener. 1, 2015, 250–259 [http://doi.org/10.1049/iet-rpg.2014.0419].
DOI: https://doi.org/10.1049/iet-rpg.2014.0419   Google Scholar

Halko S., Halko K., Suprun O., Qawaqzeh M., Miroshnyk O.: Mathematical Modelling of Cogeneration Photoelectric Module Parameters for Hybrid Solar Charging Power Stations of Electric Vehicles. IEEE 3rd KhPI Week on Advanced Technology, Kharkiv, 2022, 1-6 [http://doi.org/10.1109/KhPIWeek57572.2022.9916397].
DOI: https://doi.org/10.1109/KhPIWeek57572.2022.9916397   Google Scholar

Halko S., Suprun O., Miroshnyk O.: Influence of temperature on energy performance indicators of hybrid solar panels using cylindrical cogeneration photovoltaic modules. IEEE 2nd KhPI Week on Advanced Technology, 2021, 21259624, 132–136 [http://doi.org/10.1109/KhPIWeek53812.2021.9569975].
DOI: https://doi.org/10.1109/KhPIWeek53812.2021.9569975   Google Scholar

Hashemian A., Hosseini S. F.: An integrated fitting and fairing approach for object reconstruction using smooth NURBS curves and surfaces. Comput. Math. with Appl. 76(7), 2018, 1555-1575 [http://doi.org/10.1016/j.camwa.2018.07.007].
DOI: https://doi.org/10.1016/j.camwa.2018.07.007   Google Scholar

Hashemian A., Imani B. M.: Surface fairness: a quality metric for aesthetic assessment of compliant automotive bodies. J. Eng. Des. 29(1-2), 2018, 41-64 [http://doi.org/10.1080/09544828.2018.1435853].
DOI: https://doi.org/10.1080/09544828.2018.1435853   Google Scholar

Havrylenko Y., Cortez J. I., Kholodniak Y., Alieksieieva H., Garcia G. T.: Modelling of surfaces of engineering products on the basis of array of points. Teh. Vjesn. 27(6), 2020, 2034–2043 [http://doi.org/10.17559/TV-20190720081227].
DOI: https://doi.org/10.17559/TV-20190720081227   Google Scholar

Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Bondarenko L., Suprun O., Miroshnyk O., Shchur T., Śrutek M., Gackowska M.: Interpolation with Specified Error of a Point Series Belonging to a Monotone Curve. Entropy 23(5), 2021, 493 [http://doi.org/10.3390/e23050493].
DOI: https://doi.org/10.3390/e23050493   Google Scholar

Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Miroshnyk O., Suprun O., Dereza O., Shchur T., Śrutek M.: Representation of a Monotone Curve by a Contour with Regular Change in Curvature. Entropy 23(7), 2021, 923 [http://doi.org/10.3390/e23070923].
DOI: https://doi.org/10.3390/e23070923   Google Scholar

Havrylenko Y., Kholodniak Y., Vershkov O., Naidysh A.: Development of the method for the formation of one-dimensional contours by the assigned interpolation accuracy. East.-Eur. J. Enterp. Technol. 1(4(91)), 2018, 76-82 [http://doi.org/10.15587/1729-4061.2018.123921].
DOI: https://doi.org/10.15587/1729-4061.2018.123921   Google Scholar

Hosseini S. F., Moetakef-Imani B.: Innovative approach to computer-aided design of horizontal axis wind turbine blades. J. Comput. Des. Eng. 4(2), 2017, 98-105 [http://doi.org/10.1016/j.jcde.2016.11.001].
DOI: https://doi.org/10.1016/j.jcde.2016.11.001   Google Scholar

Karaiev O., Bondarenko L., Halko S., Miroshnyk O., Vershkov O., Karaieva T., Shshur T., Findura P., Pristavka M.: Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae 24(3), 2021, 119–123 [http://doi.org/10.2478/ata-2021-0020].
DOI: https://doi.org/10.2478/ata-2021-0020   Google Scholar

Ke Y., Fan S., Zhu W., Li A., Liu F., Shi X.: Feature-based reverse modeling strategies. Comput. Aided Des. 38(5), 2006, 485-506.
DOI: https://doi.org/10.1016/j.cad.2005.12.002   Google Scholar

Lan P., Yu Z., Du L., Lu N.: Integration of non-uniform Rational B-splines geometry and rational absolute nodal coordinates formulation finite element analysis. Acta Mech. Solida Sin. 27(5), 2014, 486-495 [http://doi.org/10.1016/S0894-9166(14)60057-4].
DOI: https://doi.org/10.1016/S0894-9166(14)60057-4   Google Scholar

Lee T.-W., Park J. E.: Entropy and Turbulence Structure. Entropy 24, 2022, 11 [http://doi.org/10.3390/e24010011].
DOI: https://doi.org/10.3390/e24010011   Google Scholar

Li H.: Geometric error control in the parabola-blending linear interpolator. J. Syst. Sci. Complex. 26(5), 2013, 777-798 [http://doi.org/10.1007/s11424-013-3178-y].
DOI: https://doi.org/10.1007/s11424-013-3178-y   Google Scholar

Li W., Xu S., Zheng J., Zhao G.: Target curvature driven fairing algorithm for planar cubic B-spline curves. Computer Aided Geom. Des. 21(5), 2004, 499-513 [http://doi.org/10.1016/j.cagd.2004.03.004].
DOI: https://doi.org/10.1016/j.cagd.2004.03.004   Google Scholar

Okaniwa Sh., Nasri A., Lin H., Abbas A., Kineri Yu., Maekawa T.: Uniform B-Spline Curve Interpolation with Prescribed Tangent and Curvature Vectors. IEEE Trans. Vis. Comput. Graph. 18(9), 2016, 1474-1487 [http://doi.org/10.1109/TVCG.2011.262].
DOI: https://doi.org/10.1109/TVCG.2011.262   Google Scholar

Park H., Kim K., Lee S-C.: A method for approximate NURBS curve compatibility based on multiple curve refitting. Comput. Aided Des. 32(4), 2000, 237-252 [http://doi.org/10.1016/S0010-4485(99)00088-3].
DOI: https://doi.org/10.1016/S0010-4485(99)00088-3   Google Scholar

Pazyi V., Miroshnyk O., Moroz O., Trunova I., Savchenko O., Halko S.: Analysis of technical condition diagnostics problems and monitoring of distribution electrical network modes from smart grid platform position. IEEE KhPI Week on Advanced Technology, Kharkiv, 2020, 57-60 [http://doi.org/10.1109/KhPIWeek51551.2020.9250080].
DOI: https://doi.org/10.1109/KhPIWeek51551.2020.9250080   Google Scholar

Peng Y. H., Yin Z. W.: The algorithms for trimmed surfaces construction and tool path generation in reverse engineering. Comput. Ind. Eng. 54(3), 2008, 624-633 [http://doi.org/10.1016/j.cie.2007.09.012].
DOI: https://doi.org/10.1016/j.cie.2007.09.012   Google Scholar

Pérez-Arribas F., Pérez-Fernández, R.: A B-spline design model for propeller blades. Adv. Eng. Softw. 118, 2018, 35–44 [http://doi.org/10.1016/j.advengsoft.2018.01.005].
DOI: https://doi.org/10.1016/j.advengsoft.2018.01.005   Google Scholar

Pérez-Arribas F., Trejo-Vargas I.: Computer-aided design of horizontal axis turbine blades. Renew. Energ. 44, 2012, 252-260 [http://doi.org/10.1016/j.renene.2012.01.100].
DOI: https://doi.org/10.1016/j.renene.2012.01.100   Google Scholar

Piegl L. A., Tiller W.: Reducing control points in surface interpolation. IEEE Comput. Graph. Appl. 20(5), 2000, 6698012, 70-75 [http://doi.org/10.1109/38.865883].
DOI: https://doi.org/10.1109/38.865883   Google Scholar

Qawaqzeh M., Szafraniec A., Halko S., Miroshnyk O., Zharkov A.: Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny 96, 2020 [http://doi.org/10.15199/48.2020.11.08].
DOI: https://doi.org/10.15199/48.2020.11.08   Google Scholar

Robbin J. W., Salomon D. A.: Introduction to Differential Geometry. Springer Spektrum, Zürich 2022.
DOI: https://doi.org/10.1007/978-3-662-64340-2   Google Scholar

Shen W., Wang G., Huang F.: Direction monotonicity of a rational Bézier curve. Appl. Math. J. Chin. Univ. 31(1), 2016, 1–20 [http://doi.org/10.1007/s11766-016-3399-7].
DOI: https://doi.org/10.1007/s11766-016-3399-7   Google Scholar

Szafraniec A., Halko S., Miroshnyk O., Figura R., Zharkov A., Vershkov O.: Magnetic field parameters mathematical modelling of windelectric heater. Przeglad elektrotechniczny 97(8), 2021, 36-41 [http://doi.org/10.15199/48.2021.08.07].
DOI: https://doi.org/10.15199/48.2021.08.07   Google Scholar

Tabor S., Lezhenkin O., Halko S., Miroshnyk O., Kovalyshyn S., Vershkov O., Hryhorenko O.: Mathematical simulation of separating work tool technological process. 22nd International Scientific Conference on Progress of Mechanical Engineering Supported by Information Technology – POLSITA 2019, Czajowice, 2019, 132 [http://doi.org/10.1051/e3sconf/201913201025].
DOI: https://doi.org/10.1051/e3sconf/201913201025   Google Scholar

Download


Published
2023-12-20

Cited by

Kholodniak, Y., Havrylenko, Y., Halko, S., Hnatushenko, V., Suprun, O., Volina, T., … Shchur, T. (2023). IMPROVEMENT OF THE ALGORITHM FOR SETTING THE CHARACTERISTICS OF INTERPOLATION MONOTONE CURVE. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(4), 44–50. https://doi.org/10.35784/iapgos.5392

Authors

Yuliia Kholodniak 
yuliya.kholodnyak@tsatu.edu.ua
Dmytro Motornyi Tavria State Agrotechnological University, Department of Computer Sciences Ukraine
https://orcid.org/0000-0001-8966-9269

Authors

Yevhen Havrylenko 

Dmytro Motornyi Tavria State Agrotechnological University, Department of Engineering Mechanics and Computer Design Ukraine
https://orcid.org/0000-0003-4501-445X

Authors

Serhii Halko 

Dmytro Motornyi Tavria State Agrotechnological University, Department of Electrical Engineering and Electromechanics named after Prof. V.V. Ovharov Ukraine
https://orcid.org/0000-0001-7991-0311

Authors

Volodymyr Hnatushenko 

Dnipro University of Technology, Department of Information Technologies and Computer Engineering Ukraine
https://orcid.org/0000-0003-3140-3788

Authors

Olena Suprun 

Dmytro Motornyi Tavria State Agrotechnological University, Department of Foreign Languages Ukraine
https://orcid.org/0000-0003-4369-712X

Authors

Tatiana Volina 

National University of Life and Environmental Sciences of Ukraine, Department of Descriptive Geometry, Computer Graphics and Design Ukraine
https://orcid.org/0000-0001-8610-2208

Authors

Oleksandr Miroshnyk 

State Biotechnological University, Department of Electricity Supply and Energy Management Ukraine
https://orcid.org/0000-0002-6144-7573

Authors

Taras Shchur 

Cyclone Manufacturing Inc, Mississauga, Ontario, Canada Canada
https://orcid.org/0000-0003-0205-032X

Statistics

Abstract views: 262
PDF downloads: 122