ARCHITECTURAL AND STRUCTURAL AND FUNCTIONAL FEATURES OF THE ORGANIZATION OF PARALLEL-HIERARCHICAL MEMORY
Article Sidebar
Open full text
Issue Vol. 14 No. 1 (2024)
-
SOME MORE ON LOGARITHMIC SINGULARITY INTEGRATION IN BOUNDARY ELEMENT METOD
Tomasz Rymarczyk, Jan Sikora5-10
-
ЕLECTROMAGNETIC FIELD EQUATIONS IN NONLINEAR ENVIRONMENT
Viktor Lyshuk, Vasyl Tchaban, Anatolii Tkachuk, Valentyn Zablotskyi, Yosyp Selepyna11-16
-
OPTICAL SPECKLE-FIELD VISIBILITY DIMINISHING BY REDUCTION OF A TEMPORAL COHERENCE
Mikhaylo Vasnetsov, Valeriy Voytsekhovich, Vladislav Ponevchinsky, Nataliia Kachalova, Alina Khodko, Oleksanr Mamuta, Volodymyr Pavlov, Vadym Khomenko, Natalia Manicheva17-20
-
QUALITY INDICATORS OF DETECTION OF SIDE RADIATION SIGNALS FROM MONITOR SCREENS BY A SPECIALIZED TECHNICAL MEANS OF ENEMY INTELLIGENCE
Dmytro Yevgrafov, Yurii Yaremchuk21-26
-
THE IMPACT OF LIGHTNING STRIKE ON HYBRID HIGH VOLTAGE OVERHEAD TRANSMISSION LINE – INSULATED GAS LINE
Samira Boumous, Zouhir Boumous, Yacine Djeghader27-31
-
ENERGY EFFICIENCY OF PHOTOVOLTAIC PANELS DEPENDING ON THE STEP RESOLUTION OF TRACKING SYSTEM
Kamil Płachta32-36
-
DIGITAL IMAGE RESTORATION USING SURF ALGORITHM
Shanmukhaprasanthi Tammineni, Swaraiya Madhuri Rayavarapu, Sasibhushana Rao Gottapu, Raj Kumar Goswami37-40
-
TENSOR AND VECTOR APPROACHES TO OBJECTS RECOGNITION BY INVERSE FEATURE FILTERS
Roman Kvуetnyy, Yuriy Bunyak, Olga Sofina, Volodymyr Kotsiubynskyi, Tetiana Piliavoz, Olena Stoliarenko, Saule Kumargazhanova41-45
-
ARCHITECTURAL AND STRUCTURAL AND FUNCTIONAL FEATURES OF THE ORGANIZATION OF PARALLEL-HIERARCHICAL MEMORY
Leonid Timchenko, Natalia Kokriatska, Volodymyr Tverdomed, Iryna Yepifanova, Yurii Didenko, Dmytro Zhuk, Maksym Kozyr, Iryna Shakhina46-52
-
SIMULATION AND COMPUTER MODELING OF BRIDGE STRUCTURES DYNAMICS USING ANSYS
Anzhelika Stakhova, Adrián Bekö53-56
-
ENHANCING CROP HEALTH THROUGH DIGITAL TWIN FOR DISEASE MONITORING AND NUTRIENT BALANCE
Sobhana Mummaneni, Tribhuvana Sree Sappa, Venkata Gayathri Devi Katakam57-62
-
REVIEW OF MODELLING APPROACHES FOR WEBSITE-RELATED PREDICTIONS
Patryk Mauer63-66
-
FORMATION OF HIGHLY SPECIALIZED CHATBOTS FOR ADVANCED SEARCH
Andrii Yarovyi, Dmytro Kudriavtsev67-70
-
METHOD FOR CALCULATING THE INFORMATION SECURITY INDICATOR IN SOCIAL MEDIA WITH CONSIDERATION OF THE PATH DURATION BETWEEN CLIENTS
Volodymyr Akhramovych, Yuriy Pepa, Anton Zahynei, Vadym Akhramovych, Taras Dzyuba, Ihor Danylov71-77
-
CORRESPONDENCE MATCHING IN 3D MODELS FOR 3D HAND FITTING
Maksym Tymkovych, Oleg Avrunin, Karina Selivanova, Alona Kolomiiets, Taras Bednarchyk, Saule Smailova78-82
-
GENETIC ALGORITHM-BASED DECISION TREE OPTIMIZATION FOR DETECTION OF DEMENTIA THROUGH MRI ANALYSIS
Govada Anuradha, Harini Davu, Muthyalanaidu Karri83-89
-
MEDICAL FUZZY-EXPERT SYSTEM FOR PREDICTION OF ENGRAFTMENT DEGREE OF DENTAL IMPLANTS IN PATIENTS WITH CHRONIC LIVER DISEASE
Vitaliy Polishchuk, Sergii Pavlov, Sergii Polishchuk, Sergii Shuvalov, Andriy Dalishchuk, Natalia Sachaniuk-Kavets’ka, Kuralay Mukhsina, Abilkaiyr Nazerke90-94
-
ROOT SURFACE TEMPERATURE MEASUREMENT DURING ROOT CANAL OBTURATION
Les Hotra, Oksana Boyko, Igor Helzhynskyy, Hryhorii Barylo, Pylyp Skoropad, Alla Ivanyshyn, Olena Basalkevych95-98
-
EVALUATING THE FEASIBILITY OF THERMOGRAPHIC IMAGES FOR PREDICTING BREAST TUMOR STAGE USING DCNN
Zakaryae Khomsi, Mohamed El Fezazi, Achraf Elouerghi, Larbi Bellarbi99-104
-
A COMPREHENSIVE STUDY: INTRACRANIAL ANEURYSM DETECTION VIA VGG16-DENSENET HYBRID DEEP LEARNING ON DSA IMAGES
Sobhana Mummaneni, Sasi Tilak Ravi, Jashwanth Bodedla, Sree Ram Vemulapalli, Gnana Sri Kowsik Varma Jagathapurao105-110
-
DEFORMATIONS OF SOIL MASSES UNDER THE ACTION OF HUMAN-INDUCED FACTORS
Mykola Kuzlo, Viktor Moshynskyi, Nataliia Zhukovska, Viktor Zhukovskyy111-114
-
RUNNING A WORKFLOW WITHOUT WORKFLOWS: A BASIC ALGORITHM FOR DYNAMICALLY CONSTRUCTING AND TRAVERSING AN IMPLIED DIRECTED ACYCLIC GRAPH IN A NON-DETERMINISTIC ENVIRONMENT
Fedir Smilianets, Oleksii Finogenov115-118
-
INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM
Dauren Darkenbayev, Arshyn Altybay, Zhaidargul Darkenbayeva, Nurbapa Mekebayev119-122
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
tumchenko_li@gsuite.duit.edu.ua
Abstract
Parallel hierarchical memory (PI memory) is a new type of memory that is designed to improve the performance of parallel computing systems. PI memory is composed of two blocks: a mask RAM and a tail element RAM. The mask RAM stores the masks that are used to encode the information, while the tail element RAM stores the actual information. The address block of the PI memory is responsible for generating the physical addresses of the cells where the tail elements and their masks are stored. The address block also stores the field of addresses where the array was written and associates this field of addresses with the corresponding external address used to write the array. The proposed address block structure is able to efficiently generate the physical addresses of the cells where the tail elements and their masks are stored. The address block is also able to store the field of addresses where the array was written and associate this field of addresses with the corresponding external address used to write the array. The proposed address block structure has been implemented in a prototype PI memory. The prototype PI memory has been shown to be able to achieve significant performance improvements over traditional memory architectures. The paper will present a detailed description of the PI transformation algorithm, a description of the different modes of addressing organization that can be used in PI memory, an analysis of the efficiency of parallel-hierarchical memory structures, and a discussion of the challenges and future research directions in the field of PI memory.
Keywords:
References
Aboutabl A. E., Elsayed M. N.: A Novel Parallel Algorithm for Clustering Documents Based on the Hierarchical Agglomerative Approach. International Journal of Computer Science & Information Technology – IJCSIT 3(2), 2011, 152–163. DOI: https://doi.org/10.5121/ijcsit.2011.3211
Bisikalo O. et al.: Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis. Entropy 25(2), 2023, 184. DOI: https://doi.org/10.3390/e25020184
Bykov M. et al.: Neural network modelling by rank configurations. Proc. of SPIE 10808, 2018, 1080821.
Kim S., Wunsch D. C.: A GPU based Parallel Hierarchical Fuzzy ART clustering. IJCNN IEEE, 2011, 2778–2782. DOI: https://doi.org/10.1109/IJCNN.2011.6033584
Kohonen T.: Self Organization and Associative Memory: Third Edition. Springer-Verlag, New York, 1989. DOI: https://doi.org/10.1007/978-3-642-88163-3
Kovtun V., Izonin I.: Study of the Operation Process of the E-Commerce Oriented Ecosystem of 5Ge Base Station, Which Supports the Functioning of Independent Virtual Network Segments. Journal of Theoretical and Applied Electronic Commerce Research 16(7), 2021, 2883–2897. DOI: https://doi.org/10.3390/jtaer16070158
Kukharchuk V. V. et al.: Features of the angular speed dynamic measurements with the use of an encoder. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska – IAPGOS 12(3), 2022, 20–26. DOI: https://doi.org/10.35784/iapgos.3035
Kukharchuk V. V. et al.: Information Conversion in Measuring Channels with Optoelectronic Sensors. Sensors 22(1), 2022, 271. DOI: https://doi.org/10.3390/s22010271
Kuusilinna K. et al.: Configurable parallel memory architecture for multimedia computers, Journal of Systems Architecture 47(14–15), 2002, 1089–1115. DOI: https://doi.org/10.1016/S1383-7621(02)00059-0
Kvуetnyy R. et al.: Inverse correlation filters of objects features with optimized regularization for image processing. Proc. SPIE 12476, 2022, 124760Q. DOI: https://doi.org/10.1117/12.2664497
Li Z., Li K., Xiao D., Yang L.: An Adaptive Parallel Hierarchical Clustering Algorithm. Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds): High Performance Computing and Communications. HPCC 2007. Lecture Notes in Computer Science 4782. Springer, Berlin, Heidelberg 2007. DOI: https://doi.org/10.1007/978-3-540-75444-2_15
Nere A., Lipasti M.: Optimizing Hierarchical Algorithms for GPGPUs. Master's Project Report. University of Wisconsin Madison, 2010.
Orazayeva A. et al.: Biomedical image segmentation method based on contour preparation, Proc. SPIE 12476, 2022, 1247605. DOI: https://doi.org/10.1117/12.2657929
Osman A. A. M.: A Multi-Level WEB Based Parallel Processing System: A Hierarchical Volunteer Computing Approach. World Academy of Science, Engineering and Technology 13, 2006, 66–71.
Pavlov S. V. et al.: The use of Bayesian methods in the task of localizing the narcotic substances distribution. International Scientific and Technical Conference on Computer Sciences and Information Technologies 2, 2019, 8929835, 60–63. DOI: https://doi.org/10.1109/STC-CSIT.2019.8929835
Rajasekaran S.: Efficient Parallel Hierarchical Clustering Algorithms. IEEE Transactions on Parallel and Distributed Systems 16(6), 2005, 497–502. DOI: https://doi.org/10.1109/TPDS.2005.72
Romanyuk S. A. et al.: Using lights in a volume-oriented rendering. Proc. SPIE 10445, 2017, 104450U. DOI: https://doi.org/10.1117/12.2280982
Rose K.: Deterministic Annealing, Clustering and Optimization. Ph.D. Thesis, California Institute of Technology, Pasadena, 1991. DOI: https://doi.org/10.1109/IJCNN.1991.170767
Sobota B.: Parallel Hierarchical Model of Visualization Computing. Journal of Information, Control and Management Systems 5(2), 2007, 345–350.
Sudarshan R. Lee S. E.: A Parallel Hierarchical Solver for the Poisson Equation, May 14, 2003,.
Timchenko L. et al.: New methods of network modelling using parallel-hierarchical networks for processing data and reducing erroneous calculation risk. CEUR Workshop 2805, 2020, 201–212.
Timchenko L. I., Kokriatskaia N. I., Pavlov S. V., Tverdomed V.: Method of indicators forecasting of biomedical images using a parallel-hierarchical network. Proc. of SPIE 11176, 2019, 111762Q. DOI: https://doi.org/10.1117/12.2536808
Timchenko L. I.: A multistage parallel-hierarchic network as a model of a neuronlike computation scheme. Cybern Syst Anal. 36, 2000, 251–267. DOI: https://doi.org/10.1007/BF02678673
Tolegen G., Toleu A., Mamyrbayev O., Mussabayev R.: Neural Named Entity Recognition for Kazakh. Lecture Notes in Computer Science 13452, 2023, 3–15. DOI: https://doi.org/10.1007/978-3-031-24340-0_1
Tymkovych M. et al: Ice crystals microscopic images segmentation based on active contours. IEEE 39th International Conference on Electronics and Nanotechnology – ELNANO 2019, 493–496 [https://doi.org/10.1109/ELNANO.2019.8783332]. DOI: https://doi.org/10.1109/ELNANO.2019.8783332
Vasilevskyi O. et al.: A new approach to assessing the dynamic uncertainty of measuring devices. Proc. of SPIE 10808, 2018, 108082E.
Vysotska O. V., Nosov K.: An approach to determination of the criteria of harmony of biological objects. Proc. of SPIE, 10808, 2018, 108083B
Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. Taylor & Francis Group, CRC Press, Balkema book, London 2019. DOI: https://doi.org/10.1201/9780429057618
Ybytayeva G. et al.: Creating a Thesaurus "Crime-Related Web Content" Based on a Multilingual Corpus. CEUR Workshop Proceedings 3396, 2023, 77–87.
Zeki S.: A Vision of the Brain. Blackwell Scientific Publications, Oxford 1993.
Zhao X., Guo Y., Feng Z., Hu S.: Parallel Hierarchical Cross Entropy Optimization for On-Chip Decap Budgeting. Design Automation Conference, Anaheim, CA, USA, 2010, 843–848. DOI: https://doi.org/10.1145/1837274.1837485
Article Details
Abstract views: 246

