SEGMENTATION OF MULTIGRADATION IMAGES BASED ON SPATIAL CONNECTIVITY FEATURES
Leonid Timchenko
tumchenko_li@gsuite.duit.edu.uaState University of Infrastructure and Technology, Artificial Intelligence Systems and Telecommunication Technologies Department (Ukraine)
https://orcid.org/0000-0001-5056-5913
Natalia Kokriatskaya
State University of Infrastructure and Technology, Artificial Intelligence Systems and Telecommunication Technologies Department (Ukraine)
https://orcid.org/0000-0003-0090-3886
Volodymyr Tverdomed
1State University of Infrastructure and Technology, Artificial Intelligence Systems and Telecommunication Technologies Department, 2Kyiv Institute of Railway Transport (Ukraine)
http://orcid.org/0000-0002-0695-1304
Oleksandr Stetsenko
State University of Infrastructure and Technology, Artificial Intelligence Systems and Telecommunication Technologies Department (Ukraine)
http://orcid.org/0000-0001-8359-0218
Valentina Kaplun
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0003-4353-3694
Oleg K. Kolesnytskyj
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0003-0336-4910
Oleksandr Reshetnik
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0009-0006-7320-329X
Saule Smailova
D.Serikbayev East Kazakhstan State Technical University (Kazakhstan)
http://orcid.org/0000-0002-8411-3584
Ulzhalgas Zhunissova
Astana Medical University (Kazakhstan)
http://orcid.org/0000-0001-5255-9314
Abstract
The article aims to study the multi-level segmentation process of images of arbitrary configuration and placement based on features of spatial connectivity. Existing image processing algorithms are analyzed, and their advantages and disadvantages are determined. A method of organizing the process of segmentation of multi-gradation halftone images is developed and an algorithm of actions according to the described method is given.
Keywords:
image segmentation, image processing, halftone images, spatial connectivityReferences
Avrunin O. G. et al.: Features of image segmentation of the upper respiratory tract for planning of rhinosurgical surgery. 2019 IEEE 39th International Conference on Electronics and Nanotechnology, ELNANO 2019, 485–488.
DOI: https://doi.org/10.1109/ELNANO.2019.8783739
Google Scholar
Avrunin O. G. et al.: Research Active Posterior Rhinomanometry Tomography Method for Nasal Breathing Determining Violations. Sensors 21, 2021, 8508 [http://doi.org/10.3390/s21248508].
DOI: https://doi.org/10.3390/s21248508
Google Scholar
Bradski G., Kaehler A.: Learning Open CV, second edition. 2013.
Google Scholar
Burgener F. et al.: Differential Diagnosis in Computed Tomography, 2011.
DOI: https://doi.org/10.1055/b-002-76304
Google Scholar
Campbell J.: Human Medical Thermography, 2022.
DOI: https://doi.org/10.1201/9781003281764
Google Scholar
Comaniciu D., Meer P.: Mean shift analysis and applications. IEEE International Conference on Computer Vision 2, 1999, 1197.
DOI: https://doi.org/10.1109/ICCV.1999.790416
Google Scholar
Comaniciu D., Meer P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 603–619.
DOI: https://doi.org/10.1109/34.1000236
Google Scholar
Comaniciu D., Ramesh V., Meer P.: Real-Time Tracking of Non-Rigid Objects Using Mean Shift. Conference on CVPR 2, 2000, 1–8.
Google Scholar
Gonzalez R., Woods R: Digital Image Processing. Technosphere, 2012.
Google Scholar
Haralik R. M.: Statistical and structural approaches to the description of textures. Proceedings of the Institute of Electronics and Radio Engineering, 1979, 98–120.
Google Scholar
Kurmi Y., Chaurasia V.: Multifeature-based medical image segmentation. Sensors, 2018.
DOI: https://doi.org/10.1049/iet-ipr.2017.1020
Google Scholar
Linda G. S. Stockman G. C.: Computer Vision, 2001.
Google Scholar
Orazayeva A. et al.: Biomedical image segmentation method based on contour preparation. Proc. SPIE 12476, 2022, 1247605 [http://doi.org/10.1117/12.2657929].
DOI: https://doi.org/10.1117/12.2657929
Google Scholar
Rodriguez-Lozano F. J., León-García F., Ruiz de Adana M., Palomares J. M., Olivares J.: Non-Invasive Forehead Segmentation in Thermographic Imaging. Sensors 19, 2019, 4096 [http://doi.org/10.3390/s19194096].
DOI: https://doi.org/10.3390/s19194096
Google Scholar
Romanyuk O. N.: A function-based approach to real-time visualization using graphics processing units. Proc. SPIE 11581, 2020, 115810E [http://doi.org/10.1117/12.2580212].
Google Scholar
Rother С., Kolmogorov V., Blake Grabcut A.: Interactive foreground extraction using iterated graph cuts, 2004.
DOI: https://doi.org/10.1145/1186562.1015720
Google Scholar
Timchenko L. I. et al.: Q-processors for real-time image processing. Proc. SPIE 11581, 2020, 115810F [http://doi.org/10.1117/12.2580230].
Google Scholar
Timchenko L. I., Kutaev Y. F.: Method and organization of image extraction. Patent 2024939С1 RF, MKI G 06 K 9/00, 1992-07-08, 1992.
Google Scholar
Vapnik V.N., Chervonenkis A.Y.: Pattern recognition theory (statistical learning problems). Science, 1974.
Google Scholar
Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics (1st ed.). CRC Press 2017 [http://doi.org/10.1201/9781315098050].
DOI: https://doi.org/10.1201/9781315098050
Google Scholar
Authors
Leonid Timchenkotumchenko_li@gsuite.duit.edu.ua
State University of Infrastructure and Technology, Artificial Intelligence Systems and Telecommunication Technologies Department Ukraine
https://orcid.org/0000-0001-5056-5913
Authors
Natalia KokriatskayaState University of Infrastructure and Technology, Artificial Intelligence Systems and Telecommunication Technologies Department Ukraine
https://orcid.org/0000-0003-0090-3886
Authors
Volodymyr Tverdomed1State University of Infrastructure and Technology, Artificial Intelligence Systems and Telecommunication Technologies Department, 2Kyiv Institute of Railway Transport Ukraine
http://orcid.org/0000-0002-0695-1304
Authors
Oleksandr StetsenkoState University of Infrastructure and Technology, Artificial Intelligence Systems and Telecommunication Technologies Department Ukraine
http://orcid.org/0000-0001-8359-0218
Authors
Valentina KaplunVinnytsia National Technical University Ukraine
http://orcid.org/0000-0003-4353-3694
Authors
Oleg K. KolesnytskyjVinnytsia National Technical University Ukraine
http://orcid.org/0000-0003-0336-4910
Authors
Oleksandr ReshetnikVinnytsia National Technical University Ukraine
http://orcid.org/0009-0006-7320-329X
Authors
Saule SmailovaD.Serikbayev East Kazakhstan State Technical University Kazakhstan
http://orcid.org/0000-0002-8411-3584
Authors
Ulzhalgas ZhunissovaAstana Medical University Kazakhstan
http://orcid.org/0000-0001-5255-9314
Statistics
Abstract views: 130PDF downloads: 134
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Yosyp Bilynsky, Aleksandr Nikolskyy, Viktor Revenok, Vasyl Pogorilyi, Saule Smailova, Oksana Voloshina, Saule Kumargazhanova, CONVOLUTIONAL NEURAL NETWORKS FOR EARLY COMPUTER DIAGNOSIS OF CHILD DYSPLASIA , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 2 (2023)
- Borys Mokin, Vitalii Mokin, Oleksandr Mokin, Orken Mamyrbaev, Saule Smailova, THE SYNTHESIS OF MATHEMATICAL MODELS OF NONLINEAR DYNAMIC SYSTEMS USING VOLTERRA INTEGRAL EQUATION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Maksym Tymkovych, Oleg Avrunin, Karina Selivanova, Alona Kolomiiets, Taras Bednarchyk, Saule Smailova, CORRESPONDENCE MATCHING IN 3D MODELS FOR 3D HAND FITTING , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)
- Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Natalia Kalashnik, Iryna Shvarts, Vladyslav Plisenko, Dmytro Zhuk, Saule Kumargazhanova, LOCAL DIFFERENCE THRESHOLD LEARNING IN FILTERING NORMAL WHITE NOISE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 2 (2023)
- Yelena Blinayeva, Saule Smailova, MODELING OF PROCESSES IN CRUDE OIL TREATED WITH LOW-FREQUENCY SOUNDS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 2 (2019)
- Volodymyr Mykhalevych, Yurii Dobraniuk, Victor Matviichuk, Volodymyr Kraievskyi, Oksana Тiutiunnyk, Saule Smailova, Ainur Kozbakova, A COMPARATIVE STUDY OF VARIOUS MODELS OF EQUIVALENT PLASTIC STRAIN TO FRACTURE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)
- Leonid Timchenko, Natalia Kokriatskaia, Mykhailo Rozvodiuk, Volodymyr Tverdomed, Yuri Kutaev, Saule Smailova, Vladyslav Plisenko, Liudmyla Semenova, Dmytro Zhuk, THE USE OF Q-PREPARATION FOR AMPLITUDE FILTERING OF DISCRETED IMAGE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 4 (2022)
- Kateryna Barandych, Sergii Vysloukh, Grygoriy Tymchyk, Oleksandr Murashchenko, Saule Smailova, Saule Kumargazhanova, OPTIMIZATION OF PARTS CUTTING PROCESS PARAMETERS WORKING IN CONDITIONS OF CYCLIC LOADS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)
- Leonid Timchenko, Natalia Kokriatska, Volodymyr Tverdomed, Iryna Yepifanova, Yurii Didenko, Dmytro Zhuk, Maksym Kozyr, Iryna Shakhina, ARCHITECTURAL AND STRUCTURAL AND FUNCTIONAL FEATURES OF THE ORGANIZATION OF PARALLEL-HIERARCHICAL MEMORY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)
- Mykhailo Burbelo, Oleksii Babenko, Yurii Loboda, Denys Lebed, Oleg K. Kolesnytskyj, Saule J. Rakhmetullina, Murat Mussabekov, AUTOMATIC ADJUSTMENT OF REACTIVE POWER BY FACTS DEVICES UNDER CONDITIONS OF VOLTAGE INSTABILITY IN THE ELECTRIC NETWORK , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 4 (2023)