SEGMENTATION OF MULTIGRADATION IMAGES BASED ON SPATIAL CONNECTIVITY FEATURES
Article Sidebar
Open full text
Issue Vol. 13 No. 3 (2023)
-
MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS
Oleksandr Vasilevskyi, Emanuel Popovici, Volodymyr Sarana5-10
-
SEGMENTATION OF CANCER MASSES ON BREAST ULTRASOUND IMAGES USING MODIFIED U-NET
Ihssane Khallassi, My Hachem El Yousfi Alaoui, Abdelilah Jilbab11-15
-
CLASSIFICATION OF PARKINSON’S DISEASE AND OTHER NEUROLOGICAL DISORDERS USING VOICE FEATURES EXTRACTION AND REDUCTION TECHNIQUES
Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch16-22
-
DEVELOPMENT OF THE POWER SUPPLY AND CONTROL SYSTEM FOR THE HEMODIALYSIS MACHINE
Volodymyr Yaskiv, Anna Yaskiv23-28
-
VALIDATION OF A THREE-DIMENSIONAL HEAD PHANTOM FOR IMAGING DATA
Jolanta Podolszańska29-32
-
OVERLOAD AND TRAFFIC MANAGEMENT OF MESSAGE SOURCES WITH DIFFERENT PRIORITY OF SERVICE
Valerii Kozlovskyi, Valerii Kozlovskyi, Andrii Toroshanko, Oleksandr Toroshanko, Natalia Yakumchuk33-36
-
RESEARCH ON CALCULATION OPTIMIZATION METHODS USED IN COMPUTER GAMES DEVELOPMENT
Natali Fedotova, Maksim Protsenko, Iryna Baranova, Svitlana Vashchenko, Yaroslava Dehtiarenko37-42
-
ANALYSIS OF THE QUALITY OF PRINTED PLA SAMPLES USING VARIOUS 3D PRINTERS AND PRINT PREPARATION PROGRAMS
Karolina Tomczyk, Albert Raczkiewicz, Magdalena Paśnikowska-Łukaszuk43-46
-
SEGMENTATION OF MULTIGRADATION IMAGES BASED ON SPATIAL CONNECTIVITY FEATURES
Leonid Timchenko, Natalia Kokriatskaya, Volodymyr Tverdomed, Oleksandr Stetsenko, Valentina Kaplun, Oleg K. Kolesnytskyj, Oleksandr Reshetnik; Saule Smailova; Ulzhalgas Zhunissova47-50
-
IMPLEMENTATION OF COMPUTER PROCESSING OF RELAXATION PROCESSES INVESTIGATION DATA USING EXTENDED EXPONENTIAL FUNCTION
Andrey Lozovskyi, Alexander Lyashkov, Igor Gomilko, Alexander Tonkoshkur51-55
-
URBAN TRAFFIC CRASH ANALYSIS USING DEEP LEARNING TECHNIQUES
Mummaneni Sobhana, Nihitha Vemulapalli, Gnana Siva Sai Venkatesh Mendu, Naga Deepika Ginjupalli, Pragathi Dodda, Rayanoothala Bala Venkata Subramanyam56-63
-
UNBALANCED MULTICLASS CLASSIFICATION WITH ADAPTIVE SYNTHETIC MULTINOMIAL NAIVE BAYES APPROACH
Fatkhurokhman Fauzi, . Ismatullah, Indah Manfaati Nur64-70
-
COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS
Volodymyr Lotysh, Larysa Gumeniuk, Pavlo Humeniuk71-74
-
A STANDALONE DC MICROGRID ENERGY MANAGEMENT STRATEGY USING THE BATTERY STATE OF CHARGE
Elvin Yusubov, Lala Bekirova75-78
-
MACROMODELING OF LOCAL POWER SUPPLY SYSTEM BALANCE FORECASTING USING FRACTAL PROPERTIES OF LOAD AND GENERATION SCHEDULES
Daniyar Jarykbassov, Petr Lezhniuk, Iryna Hunko, Vladyslav Lysyi, Lyubov Dobrovolska79-82
-
PV PANEL COOLING USING STACK EFFECT
Kudith Nageswara Rao, Ganesamoorthy Rajkuma83-85
-
A NEW AUTOMATIC INTELLIGENCE-BASED SOLAR LOAD CONTROL SYSTEM
Kudith Nageswara Rao, Ganesamoorthy Rajkuma86-89
-
OPTIMIZATION OF PARTS CUTTING PROCESS PARAMETERS WORKING IN CONDITIONS OF CYCLIC LOADS
Kateryna Barandych, Sergii Vysloukh, Grygoriy Tymchyk, Oleksandr Murashchenko, Saule Smailova, Saule Kumargazhanova90-93
-
RESEARCH THE EFFECT OF THE FRACTIONAL NUMBER SLOTS OF POLE ON WIND TURBINE GENERATION USING THE ENHANCED SPOTTED HYENA OPTIMIZATION ALGORITHM
Ibrahim M. Aladwan, Hasan Abdelrazzaq AL Dabbas, Ayman. M. Maqableh, Sayel M. Fayyad, Oleksandr Miroshnyk, Taras Shchur, Vadym Ptashnyk94-100
-
NEW SURFACE REFLECTANCE MODEL WITH THE COMBINATION OF TWO CUBIC FUNCTIONS USAGE
Oleksandr Romanyuk, Yevhen Zavalniuk, Sergii Pavlov, Roman Chekhmestruk, Zlata Bondarenko, Tetiana Koval, Aliya Kalizhanova, Aigul Iskakova101-106
-
THE CONCEPT OF ELECTRONIC CONTROL UNIT FOR COMBUSTION ENGINE IN HYBRID TANDEM
Tomasz Zyska, Marcin Powązka, Bartłomiej Forysiuk107-110
-
TESLA SWITCH OF 4 BATTERIES BASED ON THE ARDUINO UNO BOARD
Mykola Polishchuk, Serhii Grinyuk, Serhii Kostiuchko, Anatolii Tkachuk, Pavlo Savaryn111-116
-
REMOTE SOTA ALGORITHM FOR NB-IOT WIRELESS SENSORS – IMPLEMENTATION AND RESULTS
Piotr Szydłowski, Karol Zaręba117-120
-
DEVELOPMENT OF A SOFTWARE SYSTEM FOR PREDICTING EMPLOYEE RATINGS
Gulnar Balakayeva, Dauren Darkenbayev, Mukhit Zhanuzakov121-124
-
ENGINEERING AND TECHNICAL ASSESSMENT OF THE COMPETITIVENESS OF UKRAINIAN MECHANICAL ENGINEERING ENTERPRISES BASED ON THE APPLICATION OF REGRESSION MODELS
Anna Vitiuk, Leonid Polishchuk, Nataliia B. Savina, Oksana O. Adler, Gulzhan Kashaganova, Saule Kumargazhanova125-128
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
tumchenko_li@gsuite.duit.edu.ua
kokryatska_ni@gsuite.duit.edu.ua
stetsenko_oo@gsuite.duit.edu.ua
Abstract
The article aims to study the multi-level segmentation process of images of arbitrary configuration and placement based on features of spatial connectivity. Existing image processing algorithms are analyzed, and their advantages and disadvantages are determined. A method of organizing the process of segmentation of multi-gradation halftone images is developed and an algorithm of actions according to the described method is given.
Keywords:
References
Avrunin O. G. et al.: Features of image segmentation of the upper respiratory tract for planning of rhinosurgical surgery. 2019 IEEE 39th International Conference on Electronics and Nanotechnology, ELNANO 2019, 485–488. DOI: https://doi.org/10.1109/ELNANO.2019.8783739
Avrunin O. G. et al.: Research Active Posterior Rhinomanometry Tomography Method for Nasal Breathing Determining Violations. Sensors 21, 2021, 8508 [http://doi.org/10.3390/s21248508]. DOI: https://doi.org/10.3390/s21248508
Bradski G., Kaehler A.: Learning Open CV, second edition. 2013.
Burgener F. et al.: Differential Diagnosis in Computed Tomography, 2011. DOI: https://doi.org/10.1055/b-002-76304
Campbell J.: Human Medical Thermography, 2022. DOI: https://doi.org/10.1201/9781003281764
Comaniciu D., Meer P.: Mean shift analysis and applications. IEEE International Conference on Computer Vision 2, 1999, 1197. DOI: https://doi.org/10.1109/ICCV.1999.790416
Comaniciu D., Meer P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 603–619. DOI: https://doi.org/10.1109/34.1000236
Comaniciu D., Ramesh V., Meer P.: Real-Time Tracking of Non-Rigid Objects Using Mean Shift. Conference on CVPR 2, 2000, 1–8.
Gonzalez R., Woods R: Digital Image Processing. Technosphere, 2012.
Haralik R. M.: Statistical and structural approaches to the description of textures. Proceedings of the Institute of Electronics and Radio Engineering, 1979, 98–120.
Kurmi Y., Chaurasia V.: Multifeature-based medical image segmentation. Sensors, 2018. DOI: https://doi.org/10.1049/iet-ipr.2017.1020
Linda G. S. Stockman G. C.: Computer Vision, 2001.
Orazayeva A. et al.: Biomedical image segmentation method based on contour preparation. Proc. SPIE 12476, 2022, 1247605 [http://doi.org/10.1117/12.2657929]. DOI: https://doi.org/10.1117/12.2657929
Rodriguez-Lozano F. J., León-García F., Ruiz de Adana M., Palomares J. M., Olivares J.: Non-Invasive Forehead Segmentation in Thermographic Imaging. Sensors 19, 2019, 4096 [http://doi.org/10.3390/s19194096]. DOI: https://doi.org/10.3390/s19194096
Romanyuk O. N.: A function-based approach to real-time visualization using graphics processing units. Proc. SPIE 11581, 2020, 115810E [http://doi.org/10.1117/12.2580212].
Rother С., Kolmogorov V., Blake Grabcut A.: Interactive foreground extraction using iterated graph cuts, 2004. DOI: https://doi.org/10.1145/1186562.1015720
Timchenko L. I. et al.: Q-processors for real-time image processing. Proc. SPIE 11581, 2020, 115810F [http://doi.org/10.1117/12.2580230].
Timchenko L. I., Kutaev Y. F.: Method and organization of image extraction. Patent 2024939С1 RF, MKI G 06 K 9/00, 1992-07-08, 1992.
Vapnik V.N., Chervonenkis A.Y.: Pattern recognition theory (statistical learning problems). Science, 1974.
Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics (1st ed.). CRC Press 2017 [http://doi.org/10.1201/9781315098050]. DOI: https://doi.org/10.1201/9781315098050
Article Details
Abstract views: 228
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
