NEUROBIOLOGICAL PROPERTIES OF THE STRUCTURE OF THE PARALLEL-HIERARCHICAL NETWORK AND ITS USAGE FOR PATTERN RECOGNITION
Article Sidebar
Open full text
Issue Vol. 14 No. 3 (2024)
-
THEORETICAL APPROACH FOR DETERMINING AN EMISSIVITY OF SOLID MATERIALS AND ITS COMPARISON WITH EXPERIMENTAL STUDIES ON THE EXAMPLE OF 316L POWDER STEEL
Oleksandr Vasilevskyi, Michael Cullinan, Jared Allison5-8
-
INFORMATION SYSTEM FOR DETECTION OF PARAMETERS OF DANGEROUS INDUSTRIAL FACILITIES BASED ON GEOINFORMATION TECHNOLOGIES
Oleg Barabash, Olha Svynchuk, Olena Bandurka, Oleh Ilin9-14
-
PERIODIC ATEB-FUNCTIONS AND THE VAN DER POL METHOD FOR CONSTRUCTING SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR OSCILLATIONS MODELS OF ELASTIC BODIES
Yaroslav Romanchuk, Mariia Sokil, Leonid Polishchuk15-20
-
UTILIZING GAUSSIAN PROCESS REGRESSION FOR NONLINEAR MAGNETIC SEPARATION PROCESS IDENTIFICATION
Oleksandr Volovetskyi21-28
-
TWO-DIMENSIONAL HYPERCHAOTIC MAP FOR CHAOTIC OSCILLATIONS
Oleh Krulikovskyi, Serhii Haliuk, Ihor Safronov, Valentyn Lesinskyi29-34
-
NEUROBIOLOGICAL PROPERTIES OF THE STRUCTURE OF THE PARALLEL-HIERARCHICAL NETWORK AND ITS USAGE FOR PATTERN RECOGNITION
Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Anatolii Horban, Oleksandr Sobovyi, Liudmyla Pogrebniak, Nelia Burlaka, Yurii Didenko, Maksym Kozyr, Ainur Kozbakova35-38
-
MODELS OF FALSE AND CORRECT DETECTION OF INFORMATION LEAKAGE SIGNALS FROM MONITOR SCREENS BY A SPECIALIZED TECHNICAL MEANS OF ENEMY INTELLIGENCE
Dmytro Yevgrafov, Yurii Yaremchuk39-42
-
STREAMLINING DIGITAL CORRELATION-INTERFEROMETRIC DIRECTION FINDING WITH SPATIAL ANALYTICAL SIGNAL
Nurzhigit Smailov, Vitaliy Tsyporenko, Akezhan Sabibolda, Valentyn Tsyporenko, Askar Abdykadyrov, Assem Kabdoldina, Zhandos Dosbayev, Zhomart Ualiyev, Rashida Kadyrova43-48
-
MATHEMATICAL MODEL AND STRUCTURE OF A NEURAL NETWORK FOR DETECTION OF CYBER ATTACKS ON INFORMATION AND COMMUNICATION SYSTEMS
Lubov Zahoruiko, Tetiana Martianova, Mohammad Al-Hiari, Lyudmyla Polovenko, Maiia Kovalchuk, Svitlana Merinova, Volodymyr Shakhov, Bakhyt Yeraliyeva49-55
-
A METHOD FOR FORMING A TRUNCATED POSITIONAL CODE SYSTEM FOR TRANSFORMED VIDEO IMAGES
Volodymyr Barannik, Roman Onyshchenko, Gennady Pris, Mykhailo Babenko, Valeriy Barannik, Vitalii Shmakov, Ivan Pantas56-60
-
Z-NUMBERS BASED MODELING OF GROUP DECISION MAKING FOR SUPPLIER SELECTION IN MANUFACTURING SYSTEMS
Kamala Aliyeva61-67
-
OPTIMIZATION OF AN INTELLIGENT CONTROLLED BRIDGELESS POSITIVE LUO CONVERTER FOR LOW-CAPACITY ELECTRIC VEHICLES
Rangaswamy Balamurugan, Ramasamy Nithya68-70
-
MODIFIED VGG16 FOR ACCURATE BRAIN TUMOR DETECTION IN MRI IMAGERY
Katuri Rama Krishna, Mohammad Arbaaz, Surya Naga Chandra Dhanekula, Yagna Mithra Vallabhaneni71-75
-
IOT BASED ECG: HYBRID CNN-BILSTM APPROACH FOR MYOCARDIAL INFARCTION CLASSIFICATION
Abdelmalek Makhir, My Hachem El Yousfi Alaoui, Larbi Bellarbi, Abdelilah Jilbab76-80
-
INTEGRATED HYBRID MODEL FOR LUNG DISEASE DETECTION THROUGH DEEP LEARNING
Budati Jaya Lakshmi Narayana, Gopireddy Krishna Teja Reddy, Sujana Sri Kosaraju, Sirigiri Rajeev Choudhary81-85
-
POLARIZATION-CORRELATION MAPPING OF MICROSCOPIC IMAGES OF BIOLOGICAL TISSUES OF DIFFERENT MORPHOLOGICAL STRUCTURE
Nataliia Kozan, Oleksandr Saleha, Olexander Dubolazov, Yuriy Ushenko, Iryna Soltys, Oleksandr Ushenko, Oleksandr Olar, Victor Paliy, Saule Smailova86-90
-
REAL-TIME DETECTION AND CLASSIFICATION OF FISH IN UNDERWATER ENVIRONMENT USING YOLOV5: A COMPARATIVE STUDY OF DEEP LEARNING ARCHITECTURES
Rizki Multajam, Ahmad Faisal Mohamad Ayob, W.S. Mada Sanjaya, Aceng Sambas, Volodymyr Rusyn, Andrii Samila91-95
-
WEED DETECTION ON CARROTS USING CONVOLUTIONAL NEURAL NETWORK AND INTERNET OF THING BASED SMARTPHONE
Lintang Patria, Aceng Sambas, Ibrahim Mohammed Sulaiman, Mohamed Afendee Mohamed, Volodymyr Rusyn, Andrii Samila96-100
-
ANALYSIS AND STUDY OF ROLLING PARAMETERS OF COILS ON AN INCLINED PLANE
Larysa Gumeniuk, Lesya Fedik, Volodymyr Didukh, Pavlo Humeniuk101-104
-
ANALYSIS OF CONTENT RECOMMENDATION METHODS IN INFORMATION SERVICES
Oleksandr Necheporuk, Svitlana Vashchenko, Nataliia Fedotova, Iryna Baranova, Yaroslava Dehtiarenko105-108
-
DETERMINING STUDENT'S ONLINE ACADEMIC PERFORMANCE USING MACHINE LEARNING TECHNIQUES
Atika Islam, Faisal Bukhari, Muhammad Awais Sattar, Ayesha Kashif109-117
-
ENTROPY BASED EVALUATION OF THE IMPACT OF EDUCATION ON ECONOMIC DEVELOPMENT
Yelyzaveta Mykhailova, Nataliia Savina, Volodymyr Lytvynenko, Stanislav Mykhailov118-122
-
INFORMATION SYSTEM FOR ASSESSING THE LEVEL OF HUMAN CAPITAL MANAGEMENT
Anzhelika Azarova, Larysa Azarova, Iurii Krak, Olga Ruzakova, Veronika Azarova123-128
-
DECENTRALIZED PLATFORM FOR FINANCING CHARITY PROJECTS
Iryna Segeda, Vladyslav Kotsiuba, Oleksii Shushura, Viktoriia Bokovets, Natalia Koval, Aliya Kalizhanova129-134
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
tumchenko_li@gsuite.duit.edu.ua
Abstract
The paper presents the analysis of neurobiological data on the existence of the structure of a parallel-hierarchical network. Discussed method of parallel-hierarchical transformation based on population coding and its application for the pattern recognition task. Based on the analysis, we can conclude that using the methods proposed, it is possible to measure the geometric parameters and properties of images, which can significantly increase the efficiency of processing, in particular estimating the center of mass based on moment characteristics. Experimental results demonstrate that due to various destabilizing factors, accurately measuring the energy center coordinates of laser beam spot images is challenging. However, training the PI network and classifying the fragments into "good" and "bad" can considerably enhance the accuracy of these measurements.
Keywords:
References
[1] Avrunin O. G. et al.: Research Active Posterior Rhinomanometry Tomography Method for Nasal Breathing Determining Violations. Sensors 21, 2021, 8508 [https://doi.org/10.3390/s21248508]. DOI: https://doi.org/10.3390/s21248508
[2] Avrunin O. G. et al.: Features of image segmentation of the upper respiratory tract for planning of rhinosurgical surgery. IEEE 39th International Conference on Electronics and Nanotechnology – ELNANO 2019, 485–488. DOI: https://doi.org/10.1109/ELNANO.2019.8783739
[3] Chapelle O., Manavoglu E., Rosales R.: Simple and scalable response prediction for display advertising. Transactions on Intelligent Systems and Technology – TIST 5(4), 2015, 2015, 1–34. DOI: https://doi.org/10.1145/2532128
[4] Comaniciu D., Ramesh V., Meer P.: Real-Time Tracking of Non-Rigid Objects Using Mean Shift. Conference on CVPR, 2, 2000, 1–8. DOI: https://doi.org/10.1109/CVPR.2000.854761
[5] Kukharchuk V. V. et al.: Features of the angular speed dynamic measurements with the use of an encoder. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska – IAPGOS 12(3), 2022, 20–26. DOI: https://doi.org/10.35784/iapgos.3035
[6] Kuusilinna K. et al.: Configurable parallel memory architecture for multimedia computers. Journal of Systems Architecture 47(14–15), 2002, 1089–1115. DOI: https://doi.org/10.1016/S1383-7621(02)00059-0
[7] Kvуetnyy R. et al.: Inverse correlation filters of objects features with optimized regularization for image processing. Proc. SPIE 12476, 2022, 124760Q. DOI: https://doi.org/10.1117/12.2664497
[8] Lanitis A., Taylor C. J., Cootes T. F.: Automatic Face Identification System Using Flexible Appearance Models. Image and Vision Computing 13(5), 1995, 393–401. DOI: https://doi.org/10.1016/0262-8856(95)99726-H
[9] Orazayeva A. et al.: Biomedical image segmentation method based on contour preparation. Proc. SPIE 12476, 2022, 1247605.
[10] Rabinovich Z. L., Voronkov G. S.: Representation and processing of knowledge in the interaction of human sensory and linguistic neurosystems. Cybernetics and System Analysis 2, 1998, 3–11.
[11] Romanyuk O. et al.: A function-based approach to real-time visualization using graphics processing units. Proc. SPIE 11581, 2020, 115810E.
[12] Sree Vani M.: Prediction of Mobile Ad Click Using Supervised Classification Algorithms. International Journal of Computer Science and Information Technologies 7(2), 2016, 623–625.
[13] Timchenko L. I. et al.: Multi-stage parallel-hierarchical network as a model of a neural-like computing scheme. Cybernetics and system analysis 2, 2000, 114–134. DOI: https://doi.org/10.1007/BF02678673
[14] Timchenko L. et al.: New methods of network modelling using parallel-hierarchical networks for processing data and reducing erroneous calculation risk. CEUR Workshop Proceedingsthis link is disabled 2805, 2020, 201–212.
[15] Tymchenko L. et al.: Development of a method of processing images of laser beam bands with the use of parallelhierarchic networks. Eastern-European Journal of Enterprise Technologiesthis link is disabled 6(9-102), 2019, 21–27. DOI: https://doi.org/10.15587/1729-4061.2019.188568
[16] Vasilevskyi O. M.: Assessing the level of confidence for expressing extended uncertainty: a model based on control errors in the measurement of ion activity. Acta IMEKO 10(2), 2021, 199–203. DOI: https://doi.org/10.21014/acta_imeko.v10i2.810
[17] Vasilevskyi O. et al.: A new approach to assessing the dynamic uncertainty of measuring devices. Proc. SPIE 2018, 10808, 108082E.
[18] WójcikW. et al.: Information Technology in Medical Diagnostics II. Taylor & Francis Group.CRC Press, Balkema Book, London 2019.
Article Details
Abstract views: 273

