REAL-TIME DETECTION AND CLASSIFICATION OF FISH IN UNDERWATER ENVIRONMENT USING YOLOV5: A COMPARATIVE STUDY OF DEEP LEARNING ARCHITECTURES
Article Sidebar
Open full text
Issue Vol. 14 No. 3 (2024)
-
THEORETICAL APPROACH FOR DETERMINING AN EMISSIVITY OF SOLID MATERIALS AND ITS COMPARISON WITH EXPERIMENTAL STUDIES ON THE EXAMPLE OF 316L POWDER STEEL
Oleksandr Vasilevskyi, Michael Cullinan, Jared Allison5-8
-
INFORMATION SYSTEM FOR DETECTION OF PARAMETERS OF DANGEROUS INDUSTRIAL FACILITIES BASED ON GEOINFORMATION TECHNOLOGIES
Oleg Barabash, Olha Svynchuk, Olena Bandurka, Oleh Ilin9-14
-
PERIODIC ATEB-FUNCTIONS AND THE VAN DER POL METHOD FOR CONSTRUCTING SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR OSCILLATIONS MODELS OF ELASTIC BODIES
Yaroslav Romanchuk, Mariia Sokil, Leonid Polishchuk15-20
-
UTILIZING GAUSSIAN PROCESS REGRESSION FOR NONLINEAR MAGNETIC SEPARATION PROCESS IDENTIFICATION
Oleksandr Volovetskyi21-28
-
TWO-DIMENSIONAL HYPERCHAOTIC MAP FOR CHAOTIC OSCILLATIONS
Oleh Krulikovskyi, Serhii Haliuk, Ihor Safronov, Valentyn Lesinskyi29-34
-
NEUROBIOLOGICAL PROPERTIES OF THE STRUCTURE OF THE PARALLEL-HIERARCHICAL NETWORK AND ITS USAGE FOR PATTERN RECOGNITION
Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Anatolii Horban, Oleksandr Sobovyi, Liudmyla Pogrebniak, Nelia Burlaka, Yurii Didenko, Maksym Kozyr, Ainur Kozbakova35-38
-
MODELS OF FALSE AND CORRECT DETECTION OF INFORMATION LEAKAGE SIGNALS FROM MONITOR SCREENS BY A SPECIALIZED TECHNICAL MEANS OF ENEMY INTELLIGENCE
Dmytro Yevgrafov, Yurii Yaremchuk39-42
-
STREAMLINING DIGITAL CORRELATION-INTERFEROMETRIC DIRECTION FINDING WITH SPATIAL ANALYTICAL SIGNAL
Nurzhigit Smailov, Vitaliy Tsyporenko, Akezhan Sabibolda, Valentyn Tsyporenko, Askar Abdykadyrov, Assem Kabdoldina, Zhandos Dosbayev, Zhomart Ualiyev, Rashida Kadyrova43-48
-
MATHEMATICAL MODEL AND STRUCTURE OF A NEURAL NETWORK FOR DETECTION OF CYBER ATTACKS ON INFORMATION AND COMMUNICATION SYSTEMS
Lubov Zahoruiko, Tetiana Martianova, Mohammad Al-Hiari, Lyudmyla Polovenko, Maiia Kovalchuk, Svitlana Merinova, Volodymyr Shakhov, Bakhyt Yeraliyeva49-55
-
A METHOD FOR FORMING A TRUNCATED POSITIONAL CODE SYSTEM FOR TRANSFORMED VIDEO IMAGES
Volodymyr Barannik, Roman Onyshchenko, Gennady Pris, Mykhailo Babenko, Valeriy Barannik, Vitalii Shmakov, Ivan Pantas56-60
-
Z-NUMBERS BASED MODELING OF GROUP DECISION MAKING FOR SUPPLIER SELECTION IN MANUFACTURING SYSTEMS
Kamala Aliyeva61-67
-
OPTIMIZATION OF AN INTELLIGENT CONTROLLED BRIDGELESS POSITIVE LUO CONVERTER FOR LOW-CAPACITY ELECTRIC VEHICLES
Rangaswamy Balamurugan, Ramasamy Nithya68-70
-
MODIFIED VGG16 FOR ACCURATE BRAIN TUMOR DETECTION IN MRI IMAGERY
Katuri Rama Krishna, Mohammad Arbaaz, Surya Naga Chandra Dhanekula, Yagna Mithra Vallabhaneni71-75
-
IOT BASED ECG: HYBRID CNN-BILSTM APPROACH FOR MYOCARDIAL INFARCTION CLASSIFICATION
Abdelmalek Makhir, My Hachem El Yousfi Alaoui, Larbi Bellarbi, Abdelilah Jilbab76-80
-
INTEGRATED HYBRID MODEL FOR LUNG DISEASE DETECTION THROUGH DEEP LEARNING
Budati Jaya Lakshmi Narayana, Gopireddy Krishna Teja Reddy, Sujana Sri Kosaraju, Sirigiri Rajeev Choudhary81-85
-
POLARIZATION-CORRELATION MAPPING OF MICROSCOPIC IMAGES OF BIOLOGICAL TISSUES OF DIFFERENT MORPHOLOGICAL STRUCTURE
Nataliia Kozan, Oleksandr Saleha, Olexander Dubolazov, Yuriy Ushenko, Iryna Soltys, Oleksandr Ushenko, Oleksandr Olar, Victor Paliy, Saule Smailova86-90
-
REAL-TIME DETECTION AND CLASSIFICATION OF FISH IN UNDERWATER ENVIRONMENT USING YOLOV5: A COMPARATIVE STUDY OF DEEP LEARNING ARCHITECTURES
Rizki Multajam, Ahmad Faisal Mohamad Ayob, W.S. Mada Sanjaya, Aceng Sambas, Volodymyr Rusyn, Andrii Samila91-95
-
WEED DETECTION ON CARROTS USING CONVOLUTIONAL NEURAL NETWORK AND INTERNET OF THING BASED SMARTPHONE
Lintang Patria, Aceng Sambas, Ibrahim Mohammed Sulaiman, Mohamed Afendee Mohamed, Volodymyr Rusyn, Andrii Samila96-100
-
ANALYSIS AND STUDY OF ROLLING PARAMETERS OF COILS ON AN INCLINED PLANE
Larysa Gumeniuk, Lesya Fedik, Volodymyr Didukh, Pavlo Humeniuk101-104
-
ANALYSIS OF CONTENT RECOMMENDATION METHODS IN INFORMATION SERVICES
Oleksandr Necheporuk, Svitlana Vashchenko, Nataliia Fedotova, Iryna Baranova, Yaroslava Dehtiarenko105-108
-
DETERMINING STUDENT'S ONLINE ACADEMIC PERFORMANCE USING MACHINE LEARNING TECHNIQUES
Atika Islam, Faisal Bukhari, Muhammad Awais Sattar, Ayesha Kashif109-117
-
ENTROPY BASED EVALUATION OF THE IMPACT OF EDUCATION ON ECONOMIC DEVELOPMENT
Yelyzaveta Mykhailova, Nataliia Savina, Volodymyr Lytvynenko, Stanislav Mykhailov118-122
-
INFORMATION SYSTEM FOR ASSESSING THE LEVEL OF HUMAN CAPITAL MANAGEMENT
Anzhelika Azarova, Larysa Azarova, Iurii Krak, Olga Ruzakova, Veronika Azarova123-128
-
DECENTRALIZED PLATFORM FOR FINANCING CHARITY PROJECTS
Iryna Segeda, Vladyslav Kotsiuba, Oleksii Shushura, Viktoriia Bokovets, Natalia Koval, Aliya Kalizhanova129-134
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
This article explores techniques for the detection and classification of fish as an integral part of underwater environmental monitoring systems. Employing an innovative approach, the study focuses on developing real-time methods for high-precision fish detection and classification. The implementation of cutting-edge technologies, such as YOLO (You Only Look Once) V5, forms the basis for an efficient and responsive system. The study also evaluates various approaches in the context of deep learning to compare the performance and accuracy of fish detection and classification. The results of this research are expected to contribute to the development of more advanced and effective aquatic monitoring systems for understanding underwater ecosystems and conservation efforts.
Keywords:
References
[1] Abdul Aziz M. F. et al.: Development of Smart Sorting Machine using artificial intelligence for Chili Fertigation Industries. Journal of Automation, Mobile Robotics and Intelligent Systems 28, 2022, 44–52 [https://doi.org/10.14313/jamris/4-2021/26]. DOI: https://doi.org/10.14313/JAMRIS/4-2021/26
[2] Ayob A. et al.: Analysis of pruned neural networks (mobilenetv2-yolo v2) for underwater object detection. 11th National Technical Seminar on Unmanned System Technology 2019 NUSYS’19, Springer Singapore, Singapore, 2021, 87–98. DOI: https://doi.org/10.1007/978-981-15-5281-6_7
[3] Boudhane M., Benayad N.: Underwater Image Processing Method for Fish Localization and Detection in Submarine Environment. Journal of Visual Communication and Image Representation 39, 2016, 226–238 [https://doi.org/10.1016/j.jvcir.2016.05.017]. DOI: https://doi.org/10.1016/j.jvcir.2016.05.017
[4] Brownscombe J. W. et al.: The Future of Recreational Fisheries: Advances in Science, Monitoring, Management, and Practice. Fisheries Research 211, 2019, 247–255 [https://doi.org/10.1016/j.fishres.2018.10.019]. DOI: https://doi.org/10.1016/j.fishres.2018.10.019
[5] Chen PH. C. et al.: An Augmented Reality Microscope with Real-time Artificial Intelligence Integration for Cancer Diagnosis. Nature Medicine 25(9), 2019, 1453–1457 [https://doi.org/10.1038/s41591-019-0539-7]. DOI: https://doi.org/10.1038/s41591-019-0539-7
[6] Du J.: Understanding of Object Detection Based on CNN Family and YOLO. Journal of Physics: Conference Series 1004, 2018, 012029 [https://doi.org/10.1088/1742-6596/1004/1/012029]. DOI: https://doi.org/10.1088/1742-6596/1004/1/012029
[7] Fan F.-L. et al.: On Interpretability of Artificial Neural Networks: A Survey. IEEE Transactions on Radiation and Plasma Medical Sciences 5(6), 2021, 741–760 [https://doi.org/10.1109/trpms.2021.3066428]. DOI: https://doi.org/10.1109/TRPMS.2021.3066428
[8] Hong S. et al.: Opportunities and Challenges of Deep Learning Methods for Electrocardiogram Data: A Systematic Review. Computers in Biology and Medicine 122, 2020, 103801
[https://doi.org/10.1016/j.compbiomed.2020.103801]. DOI: https://doi.org/10.1016/j.compbiomed.2020.103801
[9] Hu J. et al.: Real-time Nondestructive Fish Behavior Detecting in Mixed Polyculture System Using Deep-learning and Low-cost Devices. Expert Systems With Applications 178, 2021, 115051 [https://doi.org/10.1016/j.eswa.2021.115051]. DOI: https://doi.org/10.1016/j.eswa.2021.115051
[10] Iqbal M. A. et al.: Automatic Fish Species Classification Using Deep Convolutional Neural Networks. Wireless Personal Communications 116(2), 2019, 1043–1053 [https://doi.org/10.1007/s11277-019-06634-1]. DOI: https://doi.org/10.1007/s11277-019-06634-1
[11] Isabelle D. A., Westerlund M.: A Review and Categorization of Artificial Intelligence-Based Opportunities in Wildlife, Ocean and Land Conservation. Sustainability 14(4), 2022, 1979 [https://doi.org/10.3390/su14041979]. DOI: https://doi.org/10.3390/su14041979
[12] Ismail N., Owais A. M.: Real-time Visual Inspection System for Grading Fruits Using Computer Vision and Deep Learning Techniques. Information Processing in Agriculture 9(1), 2022, 24–37 [https://doi.org/10.1016/j.inpa.2021.01.005]. DOI: https://doi.org/10.1016/j.inpa.2021.01.005
[13] Jalal A. et al.: Fish Detection and Species Classification in Underwater Environments Using Deep Learning with Temporal Information. Ecological Informatics 57, 2020, 101088 [https://doi.org/10.1016/j.ecoinf.2020.101088]. DOI: https://doi.org/10.1016/j.ecoinf.2020.101088
[14] Jing L. et al.: Video You Only Look Once: Overall Temporal Convolutions for Action Recognition. Journal of Visual Communication and Image Representation 52, 2018, 58–65 [https://doi.org/10.1016/j.jvcir.2018.01.016]. DOI: https://doi.org/10.1016/j.jvcir.2018.01.016
[15] Khan A. N. et al.: Sectorial Study of Technological Progress and CO2 Emission: Insights From a Developing Economy. Technological Forecasting and Social Change 151, 2020, 119862 [https://doi.org/10.1016/j.techfore.2019.119862]. DOI: https://doi.org/10.1016/j.techfore.2019.119862
[16] Khokher M. R. et al.: Early Lessons in Deploying Cameras and Artificial Intelligence Technology for Fisheries Catch Monitoring: Where Machine Learning Meets Commercial Fishing. Canadian Journal of Fisheries and Aquatic Sciences 79(2), 2022, 257–266 [https://doi.org/10.1139/cjfas-2020-0446]. DOI: https://doi.org/10.1139/cjfas-2020-0446
[17] Klapp I. et al.: Ornamental Fish Counting by Non-imaging Optical System for Real-time Applications. Computers and Electronics in Agriculture 153, 2018, 126–133 [https://doi.org/10.1016/j.compag.2018.08.007]. DOI: https://doi.org/10.1016/j.compag.2018.08.007
[18] Liu H., Lang B.: Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Applied Sciences 9(20), 2019, 4396 [https://doi.org/10.3390/app9204396]. DOI: https://doi.org/10.3390/app9204396
[19] Mada Sanjaya W. S.: Deep Learning Citra Medis Berbasis Pemrograman Python. Bolabot, 2023.
[20] Redmon J. et al.: You Only Look Once: Unified, Real-Time Object Detection. arXiv.org, 8 June 2015, arxiv.org/abs/1506.02640. DOI: https://doi.org/10.1109/CVPR.2016.91
[21] Reynard D., Shirgaokar M.: Harnessing the Power of Machine Learning: Can Twitter Data Be Useful in Guiding Resource Allocation Decisions During a Natural Disaster? Transportation Research Part D: Transport and Environment 77, 2019, 449–463 [https://doi.org/10.1016/j.trd.2019.03.002]. DOI: https://doi.org/10.1016/j.trd.2019.03.002
[22] Rico-Díaz Á. J. et al.: An Application of Fish Detection Based on Eye Search With Artificial Vision and Artificial Neural Networks. Water 12(11), 2020, 3013 [https://doi.org/10.3390/w12113013]. DOI: https://doi.org/10.3390/w12113013
[23] Sanjaya W. S. et al.: The Design of Face Recognition and Tracking for Human-robot Interaction. 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering – ICITISEE). IEEE, 2017 [https://doi.org/10.1109/icitisee.2017.8285519]. DOI: https://doi.org/10.1109/ICITISEE.2017.8285519
[24] Shafiee M. J. et al.: Fast YOLO: A Fast You Only Look Once System for Real-time Embedded Object Detection in Video. arXiv.org, 18 Sept. 2017, arxiv.org/abs/1709.05943. DOI: https://doi.org/10.15353/vsnl.v3i1.171
[25] Unlu E. et al.: Deep Learning-based Strategies for the Detection and Tracking of Drones Using Several Cameras. IPSJ Transactions on Computer Vision and Applications 11(1), 2019 [https://doi.org/10.1186/s41074-019-0059-x]. DOI: https://doi.org/10.1186/s41074-019-0059-x
[26] Wang D. et al.: UAV Environmental Perception and Autonomous Obstacle Avoidance: A Deep Learning and Depth Camera Combined Solution. Computers and Electronics in Agriculture 175, 2020, 105523 [https://doi.org/10.1016/j.compag.2020.105523]. DOI: https://doi.org/10.1016/j.compag.2020.105523
[27] Xiu L. et al.: Fast Accurate Fish Detection and Recognition of Underwater Images With Fast R-CNN. OCEANS 2015 – MTS/IEEE Washington. IEEE, 2015 [https://doi.org/10.23919/oceans.2015.7404464]. DOI: https://doi.org/10.23919/OCEANS.2015.7404464
[28] Zhang L. et al.: Automatic Fish Counting Method Using Image Density Grading and Local Regression. Computers and Electronics in Agriculture 179, 2020, 105844 [https://doi.org/10.1016/j.compag.2020.105844]. DOI: https://doi.org/10.1016/j.compag.2020.105844
[29] Zhao Zhong-Qiu et al.: Object Detection With Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems 30(11), 2019, 3212–3232 [https://doi.org/10.1109/tnnls.2018.2876865]. DOI: https://doi.org/10.1109/TNNLS.2018.2876865
Article Details
Abstract views: 348

