Pulse chaotic generator based a classical Chua’s circuit

Volodymyr Rusyn

rusyn_v@ukr.net
Yuriy Fedkovych Chernivtsi National University (Ukraine)
https://orcid.org/0000-0001-6219-1031

Andrii Samila


Yuriy Fedkovych Chernivtsi National University (Ukraine)

Bogdan Markovych


Lviv Polytechnic National University (Ukraine)

Aceng Sambas


3Universiti Sultan Zainal Abidin, Faculty of Informatics and Computing, Campus Besut, Malaysia, 4Universitas Muhammadiyah Tasikmalaya, Department of Mechanical Engineering, Tasikmalaya, Indonesia, 5Articial Intelligence for Sustainability and Islamic Research Center (AISIR), Universiti Sultan Zainal Abidin, Gongbadak, Malaysia (Malaysia)

Christos Skiadas


Technical University of Crete (Greece)

Milan Guzan


Technical University of Kosice (Slovakia)

Abstract

This article presents circuit realization of the pulse chaotic generator that can be used in digital modern telecommunication systems for masking and decrypt of the information. This generator based a classical Chua’s circuit. The results of computer simulation of a nonlinear element that realizes the chaotic behavior of the classical Chua's circuit are presented. For modelling was used a modern software MultiSim. Also, such basic results as chaotic attractor and time distributions of signals were obtained.


Keywords:

chaos, pulse, MultiSim, Chua’s circuit

[1] Chua L. O.: Chua’s Circuit: An overview ten years later. Journal of Circuits, Systems and Computers 04(02), 1994, 117–159 [https://doi.org/10.1142/s0218126694000090].
  Google Scholar

[2] Chua L. et al.: The double scroll family. IEEE Transactions on Circuits and Systems 33(11), 1986, 1072–1118 [https://doi.org/10.1109/tcs.1986.1085869].
  Google Scholar

[3] Cruz J. M., Chua L. O.: An IC chip of Chua’s Circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 40(10), 1993, 614–625 [https://doi.org/10.1109/82.246162].
  Google Scholar

[4] Kennedy M. P.: Robust op amp realization of Chua’s Circuit. Frequenz 46(3–4), 1992, 66–80 [https://doi.org/10.1515/freq.1992.46.3-4.66].
  Google Scholar

[5] Kopp M. I. et al.: Chaotic dynamics of magnetic fields generated by thermomagnetic instability in a nonuniformly rotating electrically conductive fluid. Journal of Physical Studies 27(2), 2023, 2403 [https://doi.org/10.30970/jps.27.2403].
  Google Scholar

[6] Kopp M., Kopp A.: A new 6D chaotic generator: Computer modelling and circuit design. International Journal of Engineering and Technology Innovation 12(4), 2022, 288–307 [https://doi.org/10.46604/ijeti.2022.9601].
  Google Scholar

[7] Kopp M., Samuilik I.: A New 6D Two-wing Hyperchaotic System: Dynamical Analysis, Circuit Design, and Sinchronization. Chaos Theory and Applications 6(4), 2024, 273–283 [https://doi.org/10.51537/chaos.1513080].
  Google Scholar

[8] Kopp M. I., Samuilik I.: Chaotic dynamics of a new 7D memristor-based generator: computer modeling and circuit design. Mathematical Modeling and Computing 12(1), 2025, 116–131 [https://doi.org/10.23939/mmc2025.01.116].
  Google Scholar

[9] Mamat A. R. et al.: Color image encryption using chaotic-based cryptosystem. Mathematical Modeling and Computing 11(3), 2024, 883–892 [https://doi.org/10.23939/mmc2024.03.883].
  Google Scholar

[10] Matsumoto T.: A chaotic attractor from Chua’s Circuit. IEEE Transactions on Circuits and Systems 31(12), 1984, 1055–1058 [https://doi.org/10.1109/tcs.1984.1085459].
  Google Scholar

[11] Mokin B. et al.: The synthesis of mathematical models of nonlinear dynamic systems using Volterra integral equation. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 12(2), 2022, 15–19 [https://doi.org/10.35784/iapgos.2947].
  Google Scholar

[12] Mokni K. et al.: Complex Dynamics and chaos control in a nonlinear discrete prey-predator model. Mathematical Modeling and Computing 10(2), 2023, 593–605 [https://doi.org/10.23939/mmc2023.02.593].
  Google Scholar

[13] Nuñez-Perez J.-C. et al.: Maximizing the chaotic behavior of fractional order Chen system by evolutionary algorithms. Mathematics 9(11), 2021, 1194 [https://doi.org/10.3390/math9111194].
  Google Scholar

[14] Papadopoulou M. S. et al.: Diverse implementations of the Lorenz system for teaching non-linear chaotic circuits. 9th International Conference on Information, Communication and Networks (ICICN) 9, 2021, 416–420 [https://doi.org/10.1109/icicn52636.2021.9674018].
  Google Scholar

[15] Rodríguez-Muñoz J. D. Et al.: Chaos-based authentication of encrypted images under MQTT for IoT protocol. Integration 102, 2025, 102378 [https://doi.org/10.1016/j.vlsi.2025.102378].
  Google Scholar

[16] Rusyn V., Skiadas C. H.: Threshold method for control of chaotic oscillations. Springer Proceedings in Complexity, 2020, 217–229 [https://doi.org/10.1007/978-3-030-39515-5_18].
  Google Scholar

[17] Rusyn V. et al.: Computer modelling, analysis of the main information properties of memristor and its application in secure communication system. CEUR Workshop Proceedings 3702, 2024, 216–225.
  Google Scholar

[18] Sidanchenko V. V, Gusev O. Yu: Research on stochastic properties of time series data on chemical analysis of Cast Iron. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4, 2024, 135–140 [https://doi.org/10.33271/nvngu/2024-4/135].
  Google Scholar

[19] Singh P. K. et al.: An efficient and lightweight image encryption technique using Lorenz chaotic system. Mathematical Modeling and Computing 11(3), 2024, 702–709 [https://doi.org/10.23939/mmc2024.03.702].
  Google Scholar

[20] Slyusarenko Yu. V. et al.: Nonlinear Dynamics of kinetic fluctuations and quasi-linear relaxation in plasma. Mathematical Modeling and Computing 10(2), 2023, 421–434 [https://doi.org/10.23939/mmc2023.02.421].
  Google Scholar

[21] Sokil B. I. et al.: Method of normal oscillations and substantiation of the choice of parameters for certain nonlinear systems with two degrees of freedom. Mathematical Modeling and Computing 10(3), 2023, 927–934 [https://doi.org/10.23939/mmc2023.03.927].
  Google Scholar

[22] Voliansky R., Sadovoi A.: Chua’s circuits interval synchronization. 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 2017, 439–443 [https://doi.org/10.1109/infocommst.2017.8246434].
  Google Scholar

[23] Voliansky R. et al.: Transformation of 3-D jerk chaotic system into parallel form. 2018 International Symposium on Advanced Intelligent Informatics (SAIN) 1, 2018, 179–184 [https://doi.org/10.1109/sain.2018.8673346].
  Google Scholar

[24] Voliansky R. et al.: Chaotic time-variant dynamical system. 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2020, 606–609 [https://doi.org/10.1109/tcset49122.2020.235503].
  Google Scholar

[25] Voliansky R. et al. Chua’s circuit with Nonlinear Energy Storages and its synchronization. IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) 870, 2023, 1–6 [https://doi.org/10.1109/ukrmico61577.2023.10380417].
  Google Scholar

[26] Vorobets H. et al.: Features of synthesis and statistical properties of the modified stream encoder with dynamic key correction. 9th International Conference on Dependable Systems, Services and Technologies (DESSERT) 4, 2018, 153–158 [https://doi.org/10.1109/dessert.2018.8409118].
  Google Scholar

[27] Vorobets H. et al.: Self-reconfigurable cryptographical coprocessor for data streaming encryption in tasks of telemetry and the internet of things. 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) 9, 2017, 1117–1120 [https://doi.org/10.1109/idaacs.2017.8095259].
  Google Scholar

[28] Wongsa W. et al.: An adaptive differential evolution algorithm with a bound adjustment strategy for solving nonlinear parameter identification problems. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(2), 2024, 119–126 [https://doi.org/10.35784/iapgos.5684].
  Google Scholar

[29] Zala A. et al.: Evaluating atrial fibrillations through strange attractors dynamics. General physiology and biophysics 40(5), 2021, 377–386 [https://doi.org/10.4149/gpb_2021016].
  Google Scholar

[30] Zemlianukhina H. et al.: Modeling and simulating of Duffing pendulum in the moved coordinate system. CEUR Workshop Proceedings 3917, 2024, 120–130.
  Google Scholar

Download


Published
2025-03-31

Cited by

Rusyn, V., Samila, A., Markovych, B., Sambas, A., Skiadas, C., & Guzan, M. (2025). Pulse chaotic generator based a classical Chua’s circuit. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 15(1), 10–14. https://doi.org/10.35784/iapgos.6703

Authors

Volodymyr Rusyn 
rusyn_v@ukr.net
Yuriy Fedkovych Chernivtsi National University Ukraine
https://orcid.org/0000-0001-6219-1031

Authors

Andrii Samila 

Yuriy Fedkovych Chernivtsi National University Ukraine

Authors

Bogdan Markovych 

Lviv Polytechnic National University Ukraine

Authors

Aceng Sambas 

3Universiti Sultan Zainal Abidin, Faculty of Informatics and Computing, Campus Besut, Malaysia, 4Universitas Muhammadiyah Tasikmalaya, Department of Mechanical Engineering, Tasikmalaya, Indonesia, 5Articial Intelligence for Sustainability and Islamic Research Center (AISIR), Universiti Sultan Zainal Abidin, Gongbadak, Malaysia Malaysia

Authors

Christos Skiadas 

Technical University of Crete Greece

Authors

Milan Guzan 

Technical University of Kosice Slovakia

Statistics

Abstract views: 47
PDF downloads: 26


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)