Pulse chaotic generator based a classical Chua’s circuit
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
This article presents circuit realization of the pulse chaotic generator that can be used in digital modern telecommunication systems for masking and decrypt of the information. This generator based a classical Chua’s circuit. The results of computer simulation of a nonlinear element that realizes the chaotic behavior of the classical Chua's circuit are presented. For modelling was used a modern software MultiSim. Also, such basic results as chaotic attractor and time distributions of signals were obtained.
Keywords:
References
[1] Chua L. O.: Chua’s Circuit: An overview ten years later. Journal of Circuits, Systems and Computers 04(02), 1994, 117–159 [https://doi.org/10.1142/s0218126694000090]. DOI: https://doi.org/10.1142/S0218126694000090
[2] Chua L. et al.: The double scroll family. IEEE Transactions on Circuits and Systems 33(11), 1986, 1072–1118 [https://doi.org/10.1109/tcs.1986.1085869]. DOI: https://doi.org/10.1109/TCS.1986.1085869
[3] Cruz J. M., Chua L. O.: An IC chip of Chua’s Circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 40(10), 1993, 614–625 [https://doi.org/10.1109/82.246162]. DOI: https://doi.org/10.1109/82.246162
[4] Kennedy M. P.: Robust op amp realization of Chua’s Circuit. Frequenz 46(3–4), 1992, 66–80 [https://doi.org/10.1515/freq.1992.46.3-4.66]. DOI: https://doi.org/10.1515/FREQ.1992.46.3-4.66
[5] Kopp M. I. et al.: Chaotic dynamics of magnetic fields generated by thermomagnetic instability in a nonuniformly rotating electrically conductive fluid. Journal of Physical Studies 27(2), 2023, 2403 [https://doi.org/10.30970/jps.27.2403]. DOI: https://doi.org/10.30970/jps.27.2403
[6] Kopp M., Kopp A.: A new 6D chaotic generator: Computer modelling and circuit design. International Journal of Engineering and Technology Innovation 12(4), 2022, 288–307 [https://doi.org/10.46604/ijeti.2022.9601]. DOI: https://doi.org/10.46604/ijeti.2022.9601
[7] Kopp M., Samuilik I.: A New 6D Two-wing Hyperchaotic System: Dynamical Analysis, Circuit Design, and Sinchronization. Chaos Theory and Applications 6(4), 2024, 273–283 [https://doi.org/10.51537/chaos.1513080]. DOI: https://doi.org/10.51537/chaos.1513080
[8] Kopp M. I., Samuilik I.: Chaotic dynamics of a new 7D memristor-based generator: computer modeling and circuit design. Mathematical Modeling and Computing 12(1), 2025, 116–131 [https://doi.org/10.23939/mmc2025.01.116]. DOI: https://doi.org/10.23939/mmc2025.01.116
[9] Mamat A. R. et al.: Color image encryption using chaotic-based cryptosystem. Mathematical Modeling and Computing 11(3), 2024, 883–892 [https://doi.org/10.23939/mmc2024.03.883]. DOI: https://doi.org/10.23939/mmc2024.03.883
[10] Matsumoto T.: A chaotic attractor from Chua’s Circuit. IEEE Transactions on Circuits and Systems 31(12), 1984, 1055–1058 [https://doi.org/10.1109/tcs.1984.1085459]. DOI: https://doi.org/10.1109/TCS.1984.1085459
[11] Mokin B. et al.: The synthesis of mathematical models of nonlinear dynamic systems using Volterra integral equation. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 12(2), 2022, 15–19 [https://doi.org/10.35784/iapgos.2947]. DOI: https://doi.org/10.35784/iapgos.2947
[12] Mokni K. et al.: Complex Dynamics and chaos control in a nonlinear discrete prey-predator model. Mathematical Modeling and Computing 10(2), 2023, 593–605 [https://doi.org/10.23939/mmc2023.02.593]. DOI: https://doi.org/10.23939/mmc2023.02.593
[13] Nuñez-Perez J.-C. et al.: Maximizing the chaotic behavior of fractional order Chen system by evolutionary algorithms. Mathematics 9(11), 2021, 1194 [https://doi.org/10.3390/math9111194]. DOI: https://doi.org/10.3390/math9111194
[14] Papadopoulou M. S. et al.: Diverse implementations of the Lorenz system for teaching non-linear chaotic circuits. 9th International Conference on Information, Communication and Networks (ICICN) 9, 2021, 416–420 [https://doi.org/10.1109/icicn52636.2021.9674018]. DOI: https://doi.org/10.1109/ICICN52636.2021.9674018
[15] Rodríguez-Muñoz J. D. Et al.: Chaos-based authentication of encrypted images under MQTT for IoT protocol. Integration 102, 2025, 102378 [https://doi.org/10.1016/j.vlsi.2025.102378]. DOI: https://doi.org/10.1016/j.vlsi.2025.102378
[16] Rusyn V., Skiadas C. H.: Threshold method for control of chaotic oscillations. Springer Proceedings in Complexity, 2020, 217–229 [https://doi.org/10.1007/978-3-030-39515-5_18]. DOI: https://doi.org/10.1007/978-3-030-39515-5_18
[17] Rusyn V. et al.: Computer modelling, analysis of the main information properties of memristor and its application in secure communication system. CEUR Workshop Proceedings 3702, 2024, 216–225.
[18] Sidanchenko V. V, Gusev O. Yu: Research on stochastic properties of time series data on chemical analysis of Cast Iron. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4, 2024, 135–140 [https://doi.org/10.33271/nvngu/2024-4/135]. DOI: https://doi.org/10.33271/nvngu/2024-4/135
[19] Singh P. K. et al.: An efficient and lightweight image encryption technique using Lorenz chaotic system. Mathematical Modeling and Computing 11(3), 2024, 702–709 [https://doi.org/10.23939/mmc2024.03.702]. DOI: https://doi.org/10.23939/mmc2024.03.702
[20] Slyusarenko Yu. V. et al.: Nonlinear Dynamics of kinetic fluctuations and quasi-linear relaxation in plasma. Mathematical Modeling and Computing 10(2), 2023, 421–434 [https://doi.org/10.23939/mmc2023.02.421]. DOI: https://doi.org/10.23939/mmc2023.02.421
[21] Sokil B. I. et al.: Method of normal oscillations and substantiation of the choice of parameters for certain nonlinear systems with two degrees of freedom. Mathematical Modeling and Computing 10(3), 2023, 927–934 [https://doi.org/10.23939/mmc2023.03.927]. DOI: https://doi.org/10.23939/mmc2023.03.927
[22] Voliansky R., Sadovoi A.: Chua’s circuits interval synchronization. 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 2017, 439–443 [https://doi.org/10.1109/infocommst.2017.8246434]. DOI: https://doi.org/10.1109/INFOCOMMST.2017.8246434
[23] Voliansky R. et al.: Transformation of 3-D jerk chaotic system into parallel form. 2018 International Symposium on Advanced Intelligent Informatics (SAIN) 1, 2018, 179–184 [https://doi.org/10.1109/sain.2018.8673346]. DOI: https://doi.org/10.1109/SAIN.2018.8673346
[24] Voliansky R. et al.: Chaotic time-variant dynamical system. 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2020, 606–609 [https://doi.org/10.1109/tcset49122.2020.235503]. DOI: https://doi.org/10.1109/TCSET49122.2020.235503
[25] Voliansky R. et al. Chua’s circuit with Nonlinear Energy Storages and its synchronization. IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) 870, 2023, 1–6 [https://doi.org/10.1109/ukrmico61577.2023.10380417]. DOI: https://doi.org/10.1109/UkrMiCo61577.2023.10380417
[26] Vorobets H. et al.: Features of synthesis and statistical properties of the modified stream encoder with dynamic key correction. 9th International Conference on Dependable Systems, Services and Technologies (DESSERT) 4, 2018, 153–158 [https://doi.org/10.1109/dessert.2018.8409118]. DOI: https://doi.org/10.1109/DESSERT.2018.8409118
[27] Vorobets H. et al.: Self-reconfigurable cryptographical coprocessor for data streaming encryption in tasks of telemetry and the internet of things. 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) 9, 2017, 1117–1120 [https://doi.org/10.1109/idaacs.2017.8095259]. DOI: https://doi.org/10.1109/IDAACS.2017.8095259
[28] Wongsa W. et al.: An adaptive differential evolution algorithm with a bound adjustment strategy for solving nonlinear parameter identification problems. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(2), 2024, 119–126 [https://doi.org/10.35784/iapgos.5684]. DOI: https://doi.org/10.35784/iapgos.5684
[29] Zala A. et al.: Evaluating atrial fibrillations through strange attractors dynamics. General physiology and biophysics 40(5), 2021, 377–386 [https://doi.org/10.4149/gpb_2021016]. DOI: https://doi.org/10.4149/gpb_2021016
[30] Zemlianukhina H. et al.: Modeling and simulating of Duffing pendulum in the moved coordinate system. CEUR Workshop Proceedings 3917, 2024, 120–130.
Article Details
Abstract views: 91