Review of operating systems used in unmanned aerial vehicles
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
Operating systems (OS) play a major role in the functionality and performance of unmanned aerial vehicles, serving as their central nervous system to manage various components and functions. This article provides a comprehensive overview of embedded operating systems (EOS), real-time operating systems (RTOS), and cloud operating systems (Cloud OS) intended for unmanned aerial vehicles (UAVs). In particular, from the perspective of practical use, both the strengths and weaknesses of the following operating systems were analyzed: PX4 Autopilot, ArduPilot, NuttX, Robot Operating System (ROS), FreeRTOS, MicroPython, and ChibiOS/RT. A general overview of the potential practical applications of Cloud OS is also presented. Therefore, one can gain insights into the criteria for selecting operating systems, as well as their strengths and limitations. It is important to understand that the role of an operating system in UAV development is crucial for optimizing performance, safety, and efficiency across various applications, from agricultural monitoring to security surveillance.
Keywords:
References
[1] Allouch A. et al.: MAVSec: Securing the MAVLink Protocol for Ardupilot/PX4 Unmanned Aerial Systems. 15th International Wireless Communications & Mobile Computing Conference (IWCMC), IEEE, Tangier, Morocco, 2019, 621–628 [https://doi.org/10.1109/IWCMC.2019.8766667]. DOI: https://doi.org/10.1109/IWCMC.2019.8766667
[2] Baldi S. et al.: ArduPilot-Based Adaptive Autopilot: Architecture and Software-in-the-Loop Experiments. IEEE Transactions on Aerospace and Electronic Systems 58(5), 2022, 4473–4485 [https://doi.org/10.1109/TAES.2022.3162179]. DOI: https://doi.org/10.1109/TAES.2022.3162179
[3] Ebeid E., Skriver M., Jin J.: A Survey on Open-Source Flight Control Platforms of Unmanned Aerial Vehicles. Euromicro Conference on Digital System Design (DSD), IEEE, Vienna, Austria, 2017, 396–402 [https://doi.org/10.1109/DSD.2017.30]. DOI: https://doi.org/10.1109/DSD.2017.30
[4] Farabi M. R. A., Sintawati A.: Flood Early Warning System at Jakarta Dam Using Internet of Things (IoT)-Based Real-Time Fishbone Method to Support Industrial Revolution 4.0. Journal of Soft Computing Explorations 5(2), 2024, 99–106 [https://doi.org/10.52465/joscex.v5i2.293]. DOI: https://doi.org/10.52465/joscex.v5i2.293
[5] Formanek L. et al.: Prototype for Measuring and Predicting Air Quality Using UAVs. EDULEARN23 Proceedings, IATED Academy, Palma, Spain, 2023, 6810–6814 [https://doi.org/10.21125/edulearn.2023.1794]. DOI: https://doi.org/10.21125/edulearn.2023.1794
[6] Fresk E., Nikolakopoulos G., Gustafsson T.: A Generalized Reduced-Complexity Inertial Navigation System for Unmanned Aerial Vehicles. IEEE Transactions on Control Systems Technology 25(1), 2017, 192–207 [https://doi.org/10.1109/TCST.2016.2542022]. DOI: https://doi.org/10.1109/TCST.2016.2542022
[7] García J., Molina J. M.: Simulation in Real Conditions of Navigation and Obstacle Avoidance with PX4/Gazebo Platform. Personal and Ubiquitous Computing 26, 2022, 1171–1191 [https://doi.org/10.1007/s00779-019-01356-4]. DOI: https://doi.org/10.1007/s00779-019-01356-4
[8] Gill R., D’Andrea R.: An Annular Wing VTOL UAV: Flight Dynamics and Control. Drones 4(2), 2020, 14 [https://doi.org/10.3390/drones4020014]. DOI: https://doi.org/10.3390/drones4020014
[9] Grogan S., Pellerin R., Gamache M.: The Use of Unmanned Aerial Vehicles and Drones in Search and Rescue Operations–A Survey. Conference PROLOG, Hull, UK, 2018, 1–13.
[10] Hari Shankar R. L. et al.: Application of UAV for Pest, Weeds and Disease Detection Using Open Computer Vision. International Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE, Tirunelveli, India, 2018, 287–292 [https://doi.org/10.1109/ICSSIT.2018.8748404]. DOI: https://doi.org/10.1109/ICSSIT.2018.8748404
[11] Itkin M., Kim M., Park Y.: Development of Cloud-Based UAV Monitoring and Management System. Sensors 16(11), 2016, 1913 [https://doi.org/10.3390/s16111913]. DOI: https://doi.org/10.3390/s16111913
[12] Jing Y. et al.: PX4 Simulation Results of a Quadcopter with a Disturbance-Observer-Based and PSO-Optimized Sliding Mode Surface Controller. Drones 6(9), 2022, 261 [https://doi.org/10.3390/drones6090261]. DOI: https://doi.org/10.3390/drones6090261
[13] Kamel M. et al.: Model Predictive Control for Trajectory Tracking of Unmanned Aerial Vehicles Using Robot Operating System. Koubaa A. (ed.): Robot Operating System (ROS). Springer, Cham 2017, 3–39 [https://doi.org/10.1007/978-3-319-54927-9_1]. DOI: https://doi.org/10.1007/978-3-319-54927-9_1
[14] Kangunde V., Jamisola R. S., Theophilus E. K.: A Review on Drones Controlled in Real-Time. International Journal of Dynamics and Control 9, 2021, 1832–1846 [https://doi.org/10.1007/s40435-020-00737-5]. DOI: https://doi.org/10.1007/s40435-020-00737-5
[15] Lamping A. P. et al.: Multi-UAV Control and Supervision with ROS. Aviation Technology, Integration, and Operations Conference, American Institute of Aeronautics and Astronautics, Atlanta, Georgia, 2018, 4245 [https://doi.org/10.2514/6.2018-4245]. DOI: https://doi.org/10.2514/6.2018-4245
[16] Lee H. et al.: A Robot Operating System Framework for Secure UAV Communications. Sensors 21(4), 2021, 1369 [https://doi.org/10.3390/s21041369]. DOI: https://doi.org/10.3390/s21041369
[17] Luo F. et al.: Stability of Cloud-Based UAV Systems Supporting Big Data Acquisition and Processing. IEEE Transactions on Cloud Computing 7(3), 2019, 866–877 [https://doi.org/10.1109/TCC.2017.2696529]. DOI: https://doi.org/10.1109/TCC.2017.2696529
[18] Luo Z., Xiang X., Zhang Q.: Autopilot System of Remotely Operated Vehicle Based on Ardupilot. Yu H. et al. (eds.): Intelligent Robotics and Applications. Springer, Cham 2019, 206–217 [https://doi.org/10.1007/978-3-030-27535-8_19]. DOI: https://doi.org/10.1007/978-3-030-27535-8_19
[19] Minucci F., Vinogradov E., Pollin S.: Avoiding Collisions at Any (Low) Cost: ADS-B Like Position Broadcast for UAVs. IEEE Access 8, 2020, 121843–121857 [https://doi.org/10.1109/ACCESS.2020.3007315]. DOI: https://doi.org/10.1109/ACCESS.2020.3007315
[20] Mou J. et al.: Adaptive Control of Flapping-Wing Micro Aerial Vehicle with Coupled Dynamics and Unknown Model Parameters. Applied Sciences 12(18), 2022, 9104 [https://doi.org/10.3390/app12189104]. DOI: https://doi.org/10.3390/app12189104
[21] Pandian A. P.: A Review on Future Challenges and Concerns Associated with an Internet of Things Based Automatic Health Monitoring System. Journal of Electrical Engineering and Automation 3(2), 2021, 92–109 [https://doi.org/10.36548/jeea.2021.2.003]. DOI: https://doi.org/10.36548/jeea.2021.2.003
[22] Ravi N., El-Sharkawy M.: Integration of UAVs with Real-Time Operating Systems Using UAVCAN. 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE, New York, USA, 2019, 600–605 [https://doi.org/10.1109/UEMCON47517.2019.8993011]. DOI: https://doi.org/10.1109/UEMCON47517.2019.8993011
[23] Silberschatz A., Galvin P. B., Gagne G.: Operating System Concepts. 10th ed. John Wiley & Sons, 2018.
[24] Sobhy A. R. et al.: UAV Cloud Operating System. 5th International Conference of Engineering Against Failure (ICEAF-V 2018), MATEC Web of Conferences, Chios, Greece, 2018, 05011 [https://doi.org/10.1051/matecconf/201818805011]. DOI: https://doi.org/10.1051/matecconf/201818805011
[25] Sørensen L. Y., Jacobsen L. T., Hansen J. P.: Low Cost and Flexible UAV Deployment of Sensors. Sensors 17(1), 2017, 154 [https://doi.org/10.3390/s17010154]. DOI: https://doi.org/10.3390/s17010154
[26] Sushma R., Kumar J. S.: Dynamic Vehicle Modelling and Controlling Techniques for Autonomous Vehicle Systems. Journal of Electrical Engineering and Automation 4(4), 2023, 307–315 [https://doi.org/10.36548/jeea.2022.4.007]. DOI: https://doi.org/10.36548/jeea.2022.4.007
[27] Tanenbaum A. S., Bos H.: Modern Operating Systems. 5th ed. Pearson, 2023.
[28] Zhang M. et al.: Which Is the Best Real-Time Operating System for Drones? Evaluation of the Real-Time Characteristics of NuttX and ChibiOS. International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Athens, Greece, 2021, 582–590 [https://doi.org/10.1109/ICUAS51884.2021.9476878]. DOI: https://doi.org/10.1109/ICUAS51884.2021.9476878
[29] ArduPilot Documentation. Ardupilot [https://ardupilot.org/ardupilot/]. (Accessed 6 Feb. 2024).
[30] Ardupilot. Ardupilot [https://ardupilot.org/] (Accessed 6 Feb. 2024).
[31] ChibiOS/RT. ChibiOS [https://www.chibios.org/dokuwiki/doku.php] (Accessed 12 Feb. 2024).
[32] FreeRTOS. FreeRTOS [https://www.freertos.org/] (Accessed 12 Feb. 2024).
[33] MicroPython. MicroPython [https://micropython.org/] (Accessed 12 Feb. 2024).
[34] Nutt G.: NuttX Operating System User’s Manual. Apache NuttX [https://cwiki.apache.org/confluence/display/NUTTX/Nuttx] (Accessed 6 Feb. 2024).
[35] NuttX. Apache NuttX [https://nuttx.apache.org/] (Accessed 6 Feb. 2024).
[36] PX4 Autopilot User Guide. PX4 [https://docs.px4.io/main/en/] (Accessed 6 Feb. 2024).
[37] PX4 Autopilot. PX4 [https://px4.io/] (Accessed 6 Feb. 2024).
[38] Real-Time Operating Systems (RTOS). Unmanned Systems Technology [https://www.unmannedsystemstechnology.com/expo/real-time-operating-systems/] (Accessed 8 Feb. 2024).
[39] Robot Operating System. ROS [https://www.ros.org/] (Accessed 6 Feb. 2024).
[40] ROS (Robot Operating System) Documentation. ROS Wiki [https://wiki.ros.org/Documentation] (Accessed 6 Feb. 2024).
Article Details
Abstract views: 427

