THE METHOD OF ADAPTIVE STATISTICAL CODING TAKING INTO ACCOUNT THE STRUCTURAL FEATURES OF VIDEO IMAGES
Article Sidebar
Open full text
Issue Vol. 14 No. 4 (2024)
-
IDENTIFICATION OF AN ARBITRARY SHAPE RIGID OBSTACLE ILLUMINATED BY FLAT ACOUSTIC WAVE USING NEAR FIELD DATA
Tomasz Rymarczyk, Jan Sikora5-9
-
RADIO FREQUENCY BASED INPAINTING FOR INDOOR LOCALIZATION USING MEMORYLESS TECHNIQUES AND WIRELESS TECHNOLOGY
Tammineni Shanmukha Prasanthi, Swarajya Madhuri Rayavarapu, Gottapu Sasibhushana Rao, Raj Kumar Goswami, Gottapu Santosh Kumar10-15
-
INTELLIGENT MATCHING TECHNIQUE FOR FLEXIBLE ANTENNAS
Olena Semenova, Andriy Semenov, Stefan Meulesteen, Natalia Kryvinska, Hanna Pastushenko16-22
-
DIFFERENTIAL MUELLER-MATRIX MAPPING OF THE POLYCRYSTALLINE COMPONENT OF BIOLOGICAL TISSUES OF HUMAN ORGANS
Andrei Padure, Oksana Bakun, Ivan Mikirin, Oleksandr Dubolazov, Iryna Soltys, Oleksandr Olar, Yuriy Ushenko, Oleksandr Ushenko, Irina Palii, Saule Kumargazhanova23-27
-
POLARIZATION SELECTOR ON WAVEGUIDES PARTIALLY FILLED BY DIELECTRIC
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova28-31
-
FUNCTIONALLY INTEGRATED DEVICE FOR TEMPERATURE MEASUREMENT
Les Hotra, Oksana Boyko, Igor Helzhynskyy, Hryhorii Barylo, Marharyta Rozhdestvenska, Halyna Lastivka32-37
-
STUDY OF THE OZONE CONTROL PROCESS USING ELECTRONIC SENSORS
Sunggat Marxuly, Askar Abdykadyrov, Katipa Chezhimbayeva, Nurzhigit Smailov38-45
-
OPTIMIZING WIND POWER PLANTS: COMPARATIVE ENHANCEMENT IN LOW WIND SPEED ENVIRONMENTS
Mustafa Hussein Ibrahim, Muhammed A. Ibrahim, Salam Ibrahim Khather46-51
-
PV SYSTEM MPPT CONTROL: A COMPARATIVE ANALYSIS OF P&O, INCCOND, SMC AND FLC ALGORITHMS
Khoukha Bouguerra, Samia Latreche, Hamza Khemlche, Mabrouk Khemliche52-62
-
DSTATCOM-BASED 15 LEVEL ASYMMETRICAL MULTILEVEL INVERTER FOR IMPROVING POWER QUALITY
Panneerselvam Sundaramoorthi, Govindasamy Saravana Venkatesh63-70
-
COMPUTER SIMULATION OF A SUPERCONDUCTING TRANSFORMER SHORT-CIRCUIT
Leszek Jaroszyński71-74
-
AI-BASED FIELD-ORIENTED CONTROL FOR INDUCTION MOTORS
Elmehdi Benmalek, Marouane Rayyam, Ayoub Gege, Omar Ennasiri, Adil Ezzaidi75-81
-
INVESTIGATION OF CHANGES IN THE LEVEL OF NETWORK SECURITY BASED ON A COGNITIVE APPROACH
Olha Saliieva, Yurii Yaremchuk82-85
-
THE UTILIZATION OF MACHINE LEARNING FOR NETWORK INTRUSION DETECTION SYSTEMS
Ahmad Sanmorino, Herri Setiawan, John Roni Coyanda86-89
-
USING SUPPORT VECTORS TO BUILD A RULE-BASED SYSTEM FOR DETECTING MALICIOUS PROCESSES IN AN ORGANISATION'S NETWORK TRAFFIC
Halyna Haidur, Sergii Gakhov, Dmytro Hamza90-96
-
EXTRACTING EMOTION-CAUSE PAIRS: A BILSTM-DRIVEN METHODOLOGY
Raga Madhuri Chandra, Giri Venkata Sai Tej Neelaiahgari, Satya Sumanth Vanapalli97-103
-
IMPROVING α-PARAMETERIZED DIFFERENTIAL TRANSFORM METHOD WITH DANDELION OPTIMIZER FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS
Mustafa Raed Najeeb, Omar Saber Qasim104-108
-
THE METHOD OF ADAPTIVE STATISTICAL CODING TAKING INTO ACCOUNT THE STRUCTURAL FEATURES OF VIDEO IMAGES
Volodymyr Barannik, Dmytro Havrylov, Serhii Pantas, Yurii Tsimura, Tatayna Belikova, Rimma Viedienieva, Vasyl Kryshtal109-114
-
OPTIMIZING TIME SERIES FORECASTING: LEVERAGING MACHINE LEARNING MODELS FOR ENHANCED PREDICTIVE ACCURACY
Waldemar Wójcik, Assem Shayakhmetova, Ardak Akhmetova, Assel Abdildayeva, Galymzhan Nurtugan115-120
-
SYNCHRONIZATION OF EVENT-DRIVEN MANAGEMENT DURING DATA COLLECTION
Valeriy Kuzminykh, Oleksandr Koval, Yevhen Havrylko, Beibei Xu, Iryna Yepifanova, Shiwei Zhu, Nataliia Bieliaieva, Bakhyt Yeraliyeva121-129
-
INTERFACE LAYOUT VERSUS EFFICIENCY OF INFORMATION ASSIMILATION IN THE LEARNING PROCESS
Julia Zachwatowicz, Oliwia Zioło, Mariusz Dzieńkowski130-135
-
AUTOMATED WATER MANAGEMENT SYSTEM WITH AI-BASED DE-MAND PREDICTION
Arman Mohammad Nakib136-140
-
UML DIAGRAMS OF THE MANAGEMENT SYSTEM OF MAINTENANCE STATIONS
Lyudmila Samchuk, Yuliia Povstiana141-145
-
DEFECT SEVERITY CODE PREDICTION BASED ON ENSEMBLE LEARNING
Ghada Mohammad Tahir Aldabbagh, Safwan Omar Hasoon146-153
-
AFFORDABLE AUGMENTED REALITY FOR SPINE SURGERY: AN EMPIRICAL INVESTIGATION INTO IMPROVING VISUALIZATION AND SURGICAL ACCURACY
Iqra Aslam, Muhammad Jasim Saeed, Zarmina Jahangir, Kanza Zafar, Muhammad Awais Sattar154-163
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
belikova.tatiana.nure@gmail.com
Abstract
The paper proposes a method of improved adaptive integral arithmetic coding. This method is advisable to use in the technology of multi-level processing of video data based on the JPEG method. The technology is based on the detection of key information at several stages of video data processing. To reduce the output volume, the RLE algorithm and integral arithmetic coding are adapted to the new structure of the input data. Thus, the method of linearization of two-dimensional transformants based on zig-zag scanning was further developed. The differences of the method consist in carrying out vector intertransformation zig-zag linearization taking into account the selection of spectral components defined as complementary. The linearized decomposition approach was developed for the first time transformants based on entry into control ranges. In connection with the presence of different types of transformants in the group, the threshold is adapted according to the criterion of the total uneven number of non-equilibrium complementary components. On the basis of taking into account the probability of occurrence of dictionary elements, integrated arithmetic coding (two-dictionary integrated arithmetic coding) has been improved. Determination of current code components according to the decomposed working interval depending on the power of the dictionaries of significant elements and the number of repetitions. This allows you to additionally take into account the statistical features of the components of the RLE-structured linearized transformants and reduce the length of the arithmetic code; for the first time, a transformant compression method was created based on the reduction of various types of redundancy in groups of transformants. Comparative experimental analysis with known methods indicated that the developed technology has a higher compression ratio with reduced processing time. This makes it possible to ensure the necessary level of access and reliability in the conditions of the growth of the original volume of data.
Keywords:
References
[1] Alakuijala J. et al.: JPEG XL next-generation image compression architecture and coding tools. Proc. SPIE 11137, 2019, 111370K. DOI: https://doi.org/10.1117/12.2529237
[2] Alakuijala J.: Image compression benchmark [https://drive.google.com/corp/ drive/folders/0B0w_eoSgaBLXY1JlYUVOMzM5VFk] (access 2024/09/08).
[3] Barannik D. et. al.: Steganographic Coding Technology for Hiding Information in Infocommunication Systems of Critical Infrastructure. 4th International Conference on Advanced Trends in Information Theory (ATIT). 2022, 88–91 [https://doi.org/10.1109/ATIT58178.2022.10024185]. DOI: https://doi.org/10.1109/ATIT58178.2022.10024185
[4] Barannik V. et. al.: Evaluation of Effectiveness of Masking Methods of Aerial Photographs. 3rd International Conference on Advanced Information and Communications Technologies (AICT). 2019, 415–418 [https://doi.org/10.1109/AIACT.2019.8847820]. DOI: https://doi.org/10.1109/AIACT.2019.8847820
[5] Barannik V. et. al.: Method of indirect information hiding in the process of video compression. Radioelectronic and Computer Systems 4, 2021, 119–131 [https://doi.org/10.32620/reks.2021.4]. DOI: https://doi.org/10.32620/reks.2021.4
[6] Bondžulić B. et. al.: Picture-wise just noticeable difference prediction model for JPEG image quality assessment. Vojnotehnički glasnik 70(1), 2022, 62–86 [https://doi.org/10.5937/vojtehg70-34739]. DOI: https://doi.org/10.5937/vojtehg70-34739
[7] Cardone B.: Fuzzy Transform Image Compression in the YUV Space. Computation 11(10), 2023, 1–19
[https://doi.org/10.3390/computation11100191]. DOI: https://doi.org/10.3390/computation11100191
[8] Chen T. et. al.: End-to-End Learnt Image Compression via Non-Local Attention Optimization and Improved Context Modeling. IEEE Transactions on Image Processing, 2021, 3179–3191 [https://doi.org/10.1109/tip.2021.3058615]. DOI: https://doi.org/10.1109/TIP.2021.3058615
[9] Cho J., Kwon O.-J., Choi S.: Improvement of JPEG XL Lossy Image Coding Using Region Adaptive DCT Block Partitioning Structure. IEEE Access 9, 113213–113225 [https://doi.org/10.1109/ACCESS.2021.3102235]. DOI: https://doi.org/10.1109/ACCESS.2021.3102235
[10] Duda J.: Asymmetric Numeral System implementation by Andrew Polar [http://ezcodesample.com/abs/abs_article.html] (access 2023/05/14).
[11] Duda J.: Asymmetric numeral systems. arXiv:0902.0271. [https://doi.org/10.48550/arXiv.0902.0271] (access 2024/09/08).
[12] Gonzalez R. et. al.: Digital Image Processing. 4th Edition. Pearson Education, 2018.
[13] ITU-T Recommendation H.265. High efficiency video coding. 2019 [https://www.itu.int/ rec/T-REC-H.265] (access 2024/09/08).
[14] Jinming L. et. al.: Learned Image Compression with Mixed Transformer-CNN Architectures. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, 14388–14397 [https://doi.org/10.1109/CVPR52729.2023.01383]. DOI: https://doi.org/10.1109/CVPR52729.2023.01383
[15] Kim I. et. al.: High efficiency video coding (HEVC) test model 12 (HM12) encoder description. JCTVC 14th meeting, 2013, JCTVC-N1002.
[16] Landu R. S.: Image Compression Using AI: Brief Insights into Deep Learning Techniques and AI Frameworks. International Journal of Engineering, Science, Technology and Innovation (IJESTI) 2(1), 2022, 1–6.
[17] Li C. et al.: Yolov6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976, 2022.
[18] Li H. et al.: Frequency-aware Transformer for Learned Image Compression. ICLR, 2024, 19, arXiv:2310.16387 (access 2024/09/08).
[19] Liao S. et. al.: Rate-Quality Based Rate Control Model for Neural Video Compression. International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, 4215–4219 [https://doi.org/10.1109/ICASSP48485.2024.10447777]. DOI: https://doi.org/10.1109/ICASSP48485.2024.10447777
[20] Lopes F. A. et. al.: FPGA implementation of the JPEG XR for onboard earth observation applications. Journal of Real-Time Image Processing 18(6), 2021, 1–12 [https://doi.org/10.1007/s11554-021-01078-y]. DOI: https://doi.org/10.1007/s11554-021-01078-y
[21] Park W. et. al.: Fast Computation of Integer DCT-V, DCT-VIII, and DST-VII for Video Coding. IEEE Transactions on Image Processing 28(12), 2019, 5839–5851. DOI: https://doi.org/10.1109/TIP.2019.2900653
[22] Ponomarenko N. et. al.: Image database TID2013: Peculiarities, results and perspectives. Signal Processing: Image Communication 30, 2015, 57–77. DOI: https://doi.org/10.1016/j.image.2014.10.009
[23] Rao K. et. al.: JPEG Series. 1st edition. River Publishers, 2021.
[24] Ren S. et al.: Faster R-CNN: Towards real-time object detection with region proposal networks. NeurIPS, 2015, arXiv:1506.01497.
[25] Russ J. C., Neal F. B.: The Image Processing Handbook. 7th Edition. CRC Press, 2018. DOI: https://doi.org/10.1201/b18983
[26] Sneyers J.: Improve the Web Experience With Progressive Image DecodingImprove the Web Experience With Progressive Image Decoding, 2021 [https://cloudinary.com/blog/improve_the_web_experience_with_progressive_image_decoding] (access 2024/09/08).
[27] Umbaugh S. E.: Digital Image Processing and Analysis: Computer Vision and Image Analysis 4th Edition. Taylor & Francis Ltd 2023. DOI: https://doi.org/10.1201/9781003221135
[28] Wassenberg J. et. al.: DIS Text of ISO IEC 18181-1 (JPEG XL), document JPEG (ISO/IEC JTC 1/SC 29/WG 1). 86th Meeting, 2020.
[29] Wassenberg J., Sneyers J.: JPEG XL White Paper, document JPEG(ISO/IEC JTC 1/SC 29/WG 1). 87th Meeting. Germany, Erlangen, 04.2020, N87021, 27–30.
[30] Wiegand T. et. al.: Overview of the H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 2003, 560–576. DOI: https://doi.org/10.1109/TCSVT.2003.815165
[31] Zhang X.: Shufflenet: An extremely efficient convolutional neural network for mobile devices. CVPR, 2018, arXiv:1707.01083. DOI: https://doi.org/10.1109/CVPR.2018.00716
Article Details
Abstract views: 235

