METHODS OF PRODUCING APODIZED FIBER BRAGG GRATINGS AND EXAMPLES OF THEIR APPLICATIONS

Łukasz Zychowicz

lukas.zychowicz@gmail.com
Lublin University of Technology, Institute of Electronics and Information Technology (Poland)

Jacek Klimek


Lublin University of Technology, Institute of Electronics and Information Technology (Poland)

Piotr Kisała


Lublin University of Technology, Institute of Electronics and Information Technology (Poland)

Abstract

The paper presents the principle of operation, the structure, applications and methods of producing uniform, chirped and blazed fiber Bragg gratings as well as long period gratings. Finally, several selected methods used to make apodized gratings are listed and described.


Keywords:

apodized fiber Bragg grating, uniform Bragg grating, chirped Bragg grating, long-period grating, blazed Bragg grating

Aladadi Y.T., Abas A.F., Alresheedi M.T.: Performance Optimization of an Apodized-Chirped Fiber Bragg Gratings Based Chromatic Dispersion Compensator. IEEE ICTON 2016, 1–5.
  Google Scholar

Ashik T.J. et al.: Analysis of simultaneous measurement of temperature and strain using different combinations of FBG. AIP Conf. Proc. 1849, 2017, 020031-1–020031-8.
  Google Scholar

Ashrafi R., Asghari M.H., Azana J.: Ultrafast Optical Arbitrary-Order Differentiators Based on Apodized Long-Period Gratings. IEEE Photonics Journal, vol. 3, no 3, 2011, 353–364.
  Google Scholar

Bandyopadhyay S. et al.: Empirical Relations for Design of Linear Edge Filters Using Apodized Linearly Chirped Fiber Bragg Grating. Journal of Lightwave Technology, vol. 26, no. 24, 2008, 3853–3859.
  Google Scholar

Beak S., Jeong Y., Lee B.: Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors. Optical Society of America, vol. 41, no. 4, 2002, 631–636.
  Google Scholar

Campbell R.J., Kashyap R.: Optically written Bragg gratings in photosensitive fibre. IEE Colloquium on Non-Linear Effects in Fibre Communications, 1990, 4/1–4/3.
  Google Scholar

Dziubiński G. et al.: Optymalizacja parametrów światłowodowych czujników do pomiaru temperatury. Annual Set The Environment Protection 18/2016, 309–324.
  Google Scholar

Faiyaz N.M., Omi A.I., Faisal M.: Optimization of Apodization Profile of Chirped Fiber Bragg Grating for Chromatic Dispersion Comensation, Dispersion Compensation Using Chirped Apodized FBG. International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) 2014, 1–5
  Google Scholar

Gu Y., Chiang K. S., Rao Y. J.: Writing of Apodized Phase-Shifted Long-Period Fiber Gratings With a Computer-Controlled CO2 Laser. IEEE Photonics Technology Letters, vol. 21, no. 10, 2009, 657–659.
  Google Scholar

Hill K.O., Fujii Y., Johanson D.C., Kawasaki B.S.: Photosensivity in optical fiber waveguides: aplication to reflection filter fabrication. Appl. Phys. Lett. 32, 647, 1978, 647–649.
  Google Scholar

James S.W., Tatam R.P.: Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14, 2003, 49–61.
  Google Scholar

James S.W., Topliss S.M., Tatam R.P.: Properties of Length-Apodized Phase-Shifted LPGs Operating at the Phase Matching Turning Point. Journal of Lightwave Technology, vol. 30, no. 13, 2012, 2203–2209.
  Google Scholar

Kaczmarek Z.: Światłowodowe czujniki i przetworniki pomiarowe. PAK, Warszawa 2006.
  Google Scholar

Kashyap R., Wyatt R., Campbell R.J.: Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating. Electronics Letters 21st, vol. 29, no. 2, 1993, 154–156.
  Google Scholar

Kashyap R.: Fiber Bragg Gratings. Academic Press, 1999.
  Google Scholar

Khan S.S.A., Islam M.S.: Chromatic Dispersion Compensation Using Linearly Chirped Apodized Fiber Bragg Grating. ICECE 2010, 9–12.
  Google Scholar

Kisała P.: Periodyczne struktury światłowodowe w optoelektronicznych czujnikach do pomiaru wybranych wielkości nieelektrycznych. Monografie – Politechnika Lubelska 2012.
  Google Scholar

Labidi H., Debarros C., Letteron R., Riant I.: Slanted Bragg grating with ultra-low polarization dependant loss. Optical Fiber Communication Conference and Exhibit 2002, 113.
  Google Scholar

Lam D.K.W., Garside B.K., Hill K.O.: Dispersion cancellation using optical-fiber filters. Optical Society of America, vol. 7, no. 6, 1982, 291.
  Google Scholar

Markowski K., Perka A., Jędrzejewski K., Osuch T.: Custom FBGs inscription using modified phase mask method with precise micro and nano-positioning. Proc. SPIE vol. 10031, 2016, 100311H [doi: 10.1117/12.2249381].
  Google Scholar

Morey W.W., Meltz G., Weiss J.M.: Separation Of Temperature And Strain Measurands In Fiber Bragg Grating Sensors. LEOS '92 Conference Proceedings IEEE Lasers and Electro-Optics Society, 1992, 454–455.
  Google Scholar

Osuch T., Jaroszewicz Z.: Influence of optical fiber location behind an apodized phase mask on Bragg grating reflection efficiencies at Bragg wavelength and its harmonics. Opt. Commun. 382, 2017, 36–41.
  Google Scholar

Osuch T., Jaroszewicz Z.: Numerical analysis of apodized fiber Bragg gratings formation using phase mask with variable diffraction efficiency. Optics Communications, vol. 284, 2011, 567–572.
  Google Scholar

Osuch T.: Numerical analysis of harmonic components of the Bragg wavelength content in spectral responses of apodized fiber Bragg gratings written by means of phase mask with variable phase step height, J. Opt. Soc. Am. A 33 (2), 2016, 172–178.
  Google Scholar

Otto M. et al.: Flexible Manufacturing Method For Long-Period Fibre Gratings With Arbitrary Index Modulation Profiles. Fibre and Optical Passive Components, 2002, 6–11.
  Google Scholar

Pastor D. et al.: Design of Apodized Linearly Chirped Fiber Gratings for Dispersion Compensation, Journal of Lightwave Technology, vol. 14, no. 11, 1996, 2581–2588.
  Google Scholar

Sikora A.: Apodyzowane siatki Bragga o stałym okresie jako przetworniki odkształceń impulsowych. Analiza numeryczna. PAK, vol. 56, nr 12, 2010, 1436–1438.
  Google Scholar

Stepniak P., Kisała P.: Analisys of impact long period Bragg gratings parameters on their special transmission characteristics. Proc. SPIE 10445, 2017, 104450G [doi: 10.1117/12.2280868].
  Google Scholar

Theriault S. et al.: Effect of phase mask stitching errors on the spectral response of uniform and apodized fiber Bragg gratings. 8th Annual Meeting Conference Proceedings, vol. 1, 1995, 77–78.
  Google Scholar

Wagner J.L. et al: Fiber Grating Optical Spectrum Analyzer Tap. Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications, no. 448, 1997, 65–68 [doi: 10.1049/cp:19971613].
  Google Scholar

Wang L. et al.: Impact of apodisation functions on group delay and reflectivity ripple of chirped fiber Bragg gratings. Optoelectronics Letters, vol. 2, no. 6, 2006, 430–432.
  Google Scholar

Williams R. et al.: Modeling of apodized point-by-point fiber-Bragg gratings. 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology, 133–135.
  Google Scholar

Wójcik W., Kisała P.: Modelowanie struktur światłowodowych siatek Bragga wykorzystywanych w układach czujnikowych. PAK vol. 53, no.11, 2007, 10–14.
  Google Scholar

Yu Y., Zhenhong Y.: Performance optimization of chirped fiber Bragg gratings by asymmetrical apodization. Proc. of the SPIE 10250, 2017, 1025003–6.
  Google Scholar

Download


Published
2018-02-28

Cited by

Zychowicz, Łukasz, Klimek, J., & Kisała, P. (2018). METHODS OF PRODUCING APODIZED FIBER BRAGG GRATINGS AND EXAMPLES OF THEIR APPLICATIONS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 8(1), 60–63. https://doi.org/10.5604/01.3001.0011.6005

Authors

Łukasz Zychowicz 
lukas.zychowicz@gmail.com
Lublin University of Technology, Institute of Electronics and Information Technology Poland

Authors

Jacek Klimek 

Lublin University of Technology, Institute of Electronics and Information Technology Poland

Authors

Piotr Kisała 

Lublin University of Technology, Institute of Electronics and Information Technology Poland

Statistics

Abstract views: 263
PDF downloads: 8540