ZASADA MODULACJI CZĘSTOTLIWOŚCIOWEJ NA BAZIE REZONATORA Z DZIELONYM PIERŚCIENIEM OBCIĄŻONEGO DIODĄ POJEMNOŚCIOWĄ

Dmytro Vovchuk

dimavovchuk@gmail.com
Yuriy Fedkovych Chernivtsi National University (Ukraina)

Serhii Haliuk


Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine (Ukraina)
http://orcid.org/0000-0003-3836-2675

Pavlo Robulets


Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine (Ukraina)

Leonid Politanskyi


Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine (Ukraina)
http://orcid.org/0000-0001-6804-9837

Abstrakt

W pracy zaproponowano zasadę modulacji częstotliwości z wykorzystaniem rezonatora z dzielonym pierścieniem (SRR) obciążonego diodą pojemnościową. Proces modulacji zachodzi poprzez ciągłą zmianę pojemności diody pojemnościowej, która z kolei następuje poprzez zmianę napięcia polaryzacji. Sygnał modulujący służy jako napięcie polaryzacji. Źródłem sygnału nośnego jest dodatkowa antena magnetyczna, która oddziałuje poprzez bliskie pole magnetyczne z SRR. W pracy przeprowadzono badania w których jako sygnał modulujący zostały wykorzystane dwa rodzaje sygnałów: harmoniczny i deterministyczny chaotyczny. Wykazano, że przy zastosowaniu diody pojemnościowej SMV1231 i częstotliwości sygnału nośnego 1 GHz możliwe jest zapewnienie modulacji częstotliwości z odchyleniem Δfd = ±80 MHz w paśmie częstotliwości 0,95… 1,11 GHz. Zaletami proponowanej metody modulacji są bardzo prosta konstrukcja i możliwość łatwego ustawienia żądanej wartości odchylenia częstotliwości poprzez dostosowanie zakresu wartości napięcia przyłożonego do diody pojemnościowej. Przedstawione badania i uzyskane wyniki mogą być przydatne w produkcji tanich komponentów radiowych.


Słowa kluczowe:

modulacja częstotliwości, dioda pojemnościowa, rezonator z dzielonym pierścieniem, zakres częstotliwości, odchylenie częstotliwości

Aydin K., Bulu I., Guven K., Kafesaki M., Soukoulis C. M., and Ozbay E.: Investigation of magnetic resonances for different split-ring resonator parameters and design. New Journal of Physics 7(168)/2005, 1–15.
DOI: https://doi.org/10.1088/1367-2630/7/1/168   Google Scholar

Baraclough M., Hooper I. R., Barnes W. L.: Investigation of the coupling between tunable split-ring resonators. Physical Review B 98/2018, 085146.
DOI: https://doi.org/10.1103/PhysRevB.98.085146   Google Scholar

Binns K.J., Lawrenson P.J.: Analysis and Computation of Electric and Magnetic Field Problems. Pergamon International Library of Science, Technology, Engineering and Social Studies, 2013.
  Google Scholar

Ebrahimi A., Withayachumnankul W., Al-Sarawi S., and Abbott D.: High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal 14(5)/2014, 1345–1351.
DOI: https://doi.org/10.1109/JSEN.2013.2295312   Google Scholar

Freire M. J., Marques R., Jelinek L.: Experimental demonstration of a µ = -1 metamaterial lens for magneticresonance imaging M. J. Freire. Applied Physics Letters 93/2008, 231108 (1–4).
DOI: https://doi.org/10.1063/1.3043725   Google Scholar

Gevorgian S. S. and Mironenko I. G.: Asymmetric coplanar-strip transmission lines for MMIC and integrated optic applications. Electron. Lett. 26(1916)/1990.
DOI: https://doi.org/10.1049/el:19901234   Google Scholar

Girich A.A.: Left-Handed Metamaterial based on the Complementary Split-Ring Resonators Tuned with Varactor Diodes. Ukrainian Journal of Physics 62(10)/2017, 903–907.
DOI: https://doi.org/10.15407/ujpe62.10.0903   Google Scholar

Imade Y., Ulbricht R., Tomoda M., Matsuda O., Seiutinas G., Juodkazis S., Wright O.B.: Gigahertz Optomechanical Modulation by Split-Ring-Resonator Nanophotonic Meta-Atom Array. Nano Letters 17/2017, 6684–6689.
DOI: https://doi.org/10.1021/acs.nanolett.7b02663   Google Scholar

Kitayama D., Yaita M., Song H.-J., Nosaka H.: High-Speed and High-ON/OFF Ratio Split-Ring-Resonator-Based Active Metamaterial using Varactor Diodes. 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2162–2035, 2016.
DOI: https://doi.org/10.1109/IRMMW-THz.2016.7758984   Google Scholar

Liang Y., Boon Ch., Li Ch. et al.: Design and Analysis of D-Band Om-Chip Modulator and Signal Source Based on Split-Ring Resonator. IEEE Transactions on Very Large Scale Integration Systems 27(7)/2019, 1513–1526.
DOI: https://doi.org/10.1109/TVLSI.2019.2906680   Google Scholar

Liang Y., Yu H., Zhang W., Lin F.: CMOS Sub-THz On-Chip Modulator by Stacked Split Ring Resonator with High-extinction Ratio. IEEE International Symposium on Radio-Frequency Integration Technology 2015, 67–69.
DOI: https://doi.org/10.1109/RFIT.2015.7377889   Google Scholar

Liu P. et al.: Tunable meta-atom using liquid metal embedded in stretchable polymer. J. Appl. Phys. 118(1)/2015, 014504.
DOI: https://doi.org/10.1063/1.4926417   Google Scholar

Liu W., Sun H., Xu L.: A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor. Sensors 18/2005, 1438(1–10).
DOI: https://doi.org/10.3390/s18051438   Google Scholar

Marques R., Medina F., Rafii-el-Idrissi R.: Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65/2002, 144440 (1–6).
DOI: https://doi.org/10.1103/PhysRevB.65.144440   Google Scholar

Marques R., Baena J. D., Martel J., Medina F., Sorolla M., Martin F.: Novel small resonant electromagnetic particles for metamaterial and filter design. International Conference on Electromagnetic in Advanced Applications (ICEAA’03), Torino, Italy 2015, 439–442, 2005.
  Google Scholar

Marques R., Martin F.: Wire media: Metamaterial Handbook. Theory and Phenomena of Metamaterials 2009. Chapter 16-1, CRC Press, Boca Raton.
  Google Scholar

Marques R., Mesa F., Martel J., Medina F.: Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments. IEEE Transactions on Antennas and Propagation, 51/2003, 2572–2581.
DOI: https://doi.org/10.1109/TAP.2003.817562   Google Scholar

Moser H.O., Casse B.D.F., Wilhelmi O., Saw B.T.: Terahertz Response of a Microfabricated Rod-Split_Ring Resonator Electromagnetic Metamaterial. Physical Review Letters 94/2005, 063901(1–4).
DOI: https://doi.org/10.1103/PhysRevLett.94.063901   Google Scholar

Puentes M., Schubler M., Jakoby R.: 2D sensor array based on Split Ring Resonators for monitoring of organic tissue. Sensors 2011, 12491246.
DOI: https://doi.org/10.1109/ICSENS.2011.6126955   Google Scholar

Rosa E. B.: The self and mutual inductances of linear conductors. Bulletin of the Bureau of Standards 4, 80/1908, 301–344.
DOI: https://doi.org/10.6028/bulletin.088   Google Scholar

Salim A., Lim S.: Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor. Sensors, 16/2016, 1802(1–13).
DOI: https://doi.org/10.3390/s16111802   Google Scholar

Schuster Ch.: Fast and Accurate Tuning of a Cross-Coupled Split-Ring Resonator Filter. GeMiC-2018, March 12–14, 2018, Freiburg, Germany, 134–137.
DOI: https://doi.org/10.23919/GEMIC.2018.8335047   Google Scholar

Silva S. R., Shields A. D., Zhou J.: Tunable Optical Bistability and Optical Switching by Nonlinear Metamaterials. Material Science 2017.
  Google Scholar

Veselago V. G.: The Electrodynamics of Substances with Simultaneously negative Values of ε and μ. Soviet Physics Uspekhi 10(4)/1967, 509–514.
DOI: https://doi.org/10.1070/PU1968v010n04ABEH003699   Google Scholar

Vovchuk D., Khobzei M., Khavruniak M.: Sensing Properties of SRR: influence of finger touching. Int. Scientific-Practical Conference PIC S&T’2019, 8–11 October 2019, Kyiv, Ukraine, 799–802.
DOI: https://doi.org/10.1109/PICST47496.2019.9061371   Google Scholar

Wang Q., Mao D., Dong L.: Thermomechanically Tunable Infrared Metamaterials Using Asymmetric Split-Ring Resonators. Journal of Microelectromechanical Systems 26(6)/2017, 1–3.
DOI: https://doi.org/10.1109/JMEMS.2017.2764054   Google Scholar

Ye-xin S., Jiu-sheng L., Le Z.: Graphene-integrated split-ring resonator terahertz modulator. Opt. Quant. Electron., 350/2017, 1–9.
DOI: https://doi.org/10.1007/s11082-017-1198-x   Google Scholar

Zheludev N.I., Kivshar Yu.S.: From metamaterials to metadevices. Nature Materials 11/2012, 917–924.
DOI: https://doi.org/10.1038/nmat3431   Google Scholar

https://pdf1.alldatasheet.com/datasheet-pdf/view/155289/SKYWORKS/SMV1231.html
  Google Scholar


Opublikowane
2020-09-30

Cited By / Share

Vovchuk, D., Haliuk, S., Robulets, P., & Politanskyi, L. (2020). ZASADA MODULACJI CZĘSTOTLIWOŚCIOWEJ NA BAZIE REZONATORA Z DZIELONYM PIERŚCIENIEM OBCIĄŻONEGO DIODĄ POJEMNOŚCIOWĄ . Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(3), 74–77. https://doi.org/10.35784/iapgos.2003

Autorzy

Dmytro Vovchuk 
dimavovchuk@gmail.com
Yuriy Fedkovych Chernivtsi National University Ukraina

Autorzy

Serhii Haliuk 

Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine Ukraina
http://orcid.org/0000-0003-3836-2675

Autorzy

Pavlo Robulets 

Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine Ukraina

Autorzy

Leonid Politanskyi 

Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine Ukraina
http://orcid.org/0000-0001-6804-9837

Statystyki

Abstract views: 379
PDF downloads: 235